Non-Hermitian Casimir effect of magnons

Kouki Nakata, Kei Suzuki
{"title":"Non-Hermitian Casimir effect of magnons","authors":"Kouki Nakata, Kei Suzuki","doi":"10.1038/s44306-024-00017-4","DOIUrl":null,"url":null,"abstract":"There has been a growing interest in non-Hermitian quantum mechanics. The key concepts of quantum mechanics are quantum fluctuations. Quantum fluctuations of quantum fields confined in a finite-size system induce the zero-point energy shift. This quantum phenomenon, the Casimir effect, is one of the most striking phenomena of quantum mechanics in the sense that there are no classical analogs and has been attracting much attention beyond the hierarchy of energy scales, ranging from elementary particle physics to condensed matter physics, together with photonics. However, the non-Hermitian extension of the Casimir effect and the application to spintronics have not yet been investigated enough, although exploring energy sources and developing energy-efficient nanodevices are its central issues. Here we fill this gap. By developing a magnonic analog of the Casimir effect into non-Hermitian systems, we show that this non-Hermitian Casimir effect of magnons is enhanced as the Gilbert damping constant (i.e., the energy dissipation rate) increases. When the damping constant exceeds a critical value, the non-Hermitian Casimir effect of magnons exhibits an oscillating behavior, including a beating one, as a function of the film thickness and is characterized by the exceptional point. Our result suggests that energy dissipation serves as a key ingredient of Casimir engineering.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00017-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Spintronics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44306-024-00017-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There has been a growing interest in non-Hermitian quantum mechanics. The key concepts of quantum mechanics are quantum fluctuations. Quantum fluctuations of quantum fields confined in a finite-size system induce the zero-point energy shift. This quantum phenomenon, the Casimir effect, is one of the most striking phenomena of quantum mechanics in the sense that there are no classical analogs and has been attracting much attention beyond the hierarchy of energy scales, ranging from elementary particle physics to condensed matter physics, together with photonics. However, the non-Hermitian extension of the Casimir effect and the application to spintronics have not yet been investigated enough, although exploring energy sources and developing energy-efficient nanodevices are its central issues. Here we fill this gap. By developing a magnonic analog of the Casimir effect into non-Hermitian systems, we show that this non-Hermitian Casimir effect of magnons is enhanced as the Gilbert damping constant (i.e., the energy dissipation rate) increases. When the damping constant exceeds a critical value, the non-Hermitian Casimir effect of magnons exhibits an oscillating behavior, including a beating one, as a function of the film thickness and is characterized by the exceptional point. Our result suggests that energy dissipation serves as a key ingredient of Casimir engineering.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁子的非赫米梯卡西米尔效应
人们对非赫米提量子力学的兴趣与日俱增。量子力学的关键概念是量子波动。限制在有限大小系统中的量子场的量子波动会引起零点能量移动。这种量子现象,即卡西米尔效应,是量子力学中最引人注目的现象之一,因为它没有经典的类似物,在能量尺度的层次结构之外,从基本粒子物理学到凝聚态物理学,再到光子学,一直备受关注。然而,尽管探索能源和开发高能效纳米器件是卡西米尔效应的核心问题,但对卡西米尔效应的非赫米提扩展及其在自旋电子学中的应用还没有进行足够的研究。在这里,我们填补了这一空白。通过将卡西米尔效应的磁子类似物发展到非赫米提系统中,我们发现磁子的这种非赫米提卡西米尔效应会随着吉尔伯特阻尼常数(即能量耗散率)的增加而增强。当阻尼常数超过临界值时,磁子的非赫米梯卡西米尔效应会表现出振荡行为,包括跳动行为,与薄膜厚度成函数关系,并以异常点为特征。我们的研究结果表明,能量耗散是卡西米尔工程的关键要素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spin-Hall effect in topological materials: evaluating the proper spin current in systems with arbitrary degeneracies Recent progress on controlling spin-orbit torques by materials design Enhanced performance and functionality in spintronic sensors Connecting physics to systems with modular spin-circuits The mysterious magnetic ground state of Ba14MnBi11 is likely self-doped and altermagnetic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1