Ultrafast emergence of ferromagnetism in antiferromagnetic FeRh in high magnetic fields.

npj Spintronics Pub Date : 2025-01-01 Epub Date: 2025-02-03 DOI:10.1038/s44306-024-00069-6
I A Dolgikh, T G H Blank, A G Buzdakov, G Li, K H Prabhakara, S K K Patel, R Medapalli, E E Fullerton, O V Koplak, J H Mentink, K A Zvezdin, A K Zvezdin, P C M Christianen, A V Kimel
{"title":"Ultrafast emergence of ferromagnetism in antiferromagnetic FeRh in high magnetic fields.","authors":"I A Dolgikh, T G H Blank, A G Buzdakov, G Li, K H Prabhakara, S K K Patel, R Medapalli, E E Fullerton, O V Koplak, J H Mentink, K A Zvezdin, A K Zvezdin, P C M Christianen, A V Kimel","doi":"10.1038/s44306-024-00069-6","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrafast heating of FeRh by a femtosecond laser pulse launches a magneto-structural phase transition from an antiferromagnetic to a ferromagnetic state. Aiming to reveal the ultrafast kinetics of this transition, we studied magnetization dynamics with the help of the magneto-optical Kerr effect in a broad range of temperatures (from 4 K to 400 K) and magnetic fields (up to 25 T). Three different types of ultrafast magnetization dynamics were observed and, using a numerically calculated H-T phase diagram, the differences were explained by different initial states of FeRh corresponding to a (i) collinear antiferromagnetic, (ii) canted antiferromagnetic and (iii) ferromagnetic alignment of spins. We argue that ultrafast heating of FeRh in the canted antiferromagnetic phase launches practically the fastest possible emergence of ferromagnetism in this material. The magnetization emerges on a time scale of 2 ps, which corresponds to the earlier reported time scale of the structural changes during the phase transition.</p>","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":"3 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790480/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Spintronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44306-024-00069-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrafast heating of FeRh by a femtosecond laser pulse launches a magneto-structural phase transition from an antiferromagnetic to a ferromagnetic state. Aiming to reveal the ultrafast kinetics of this transition, we studied magnetization dynamics with the help of the magneto-optical Kerr effect in a broad range of temperatures (from 4 K to 400 K) and magnetic fields (up to 25 T). Three different types of ultrafast magnetization dynamics were observed and, using a numerically calculated H-T phase diagram, the differences were explained by different initial states of FeRh corresponding to a (i) collinear antiferromagnetic, (ii) canted antiferromagnetic and (iii) ferromagnetic alignment of spins. We argue that ultrafast heating of FeRh in the canted antiferromagnetic phase launches practically the fastest possible emergence of ferromagnetism in this material. The magnetization emerges on a time scale of 2 ps, which corresponds to the earlier reported time scale of the structural changes during the phase transition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spin-orbit interaction driven terahertz nonlinear dynamics in transition metals. Ultrafast emergence of ferromagnetism in antiferromagnetic FeRh in high magnetic fields. The role of excitation vector fields and all-polarisation state control in cavity magnonics Controllable half-metallicity in MnPX3 monolayer Hidden in not-so-plain sight: altermagnets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1