Structural Insights into the Interaction of Terpenoids with Streptomyces avermitilis CYP107P2.

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Biomolecules & Therapeutics Pub Date : 2024-07-01 Epub Date: 2024-06-05 DOI:10.4062/biomolther.2024.045
Eunseo Jeong, Vitchan Kim, Changmin Kim, Yoo-Bin Lee, Donghak Kim
{"title":"Structural Insights into the Interaction of Terpenoids with <i>Streptomyces avermitilis</i> CYP107P2.","authors":"Eunseo Jeong, Vitchan Kim, Changmin Kim, Yoo-Bin Lee, Donghak Kim","doi":"10.4062/biomolther.2024.045","DOIUrl":null,"url":null,"abstract":"<p><p><i>Streptomyces avermitilis</i> genome includes 33 genes encoding monooxygenation-catalyzing cytochrome P450 enzymes. We investigated the structure of CYP107P2 and its interactions with terpenoid compounds. The recombinant CYP107P2 protein was expressed in <i>Escherichia coli</i> and the purified enzyme exhibited a typical P450 spectrum upon CO-binding in its reduced state. Type-I substrate-binding spectral titrations were observed with various terpenoid compounds, including α-pinene, β-pinene, α-terpinyl acetate, and (+)-3-carene. The calculated binding affinities (<i>K</i><sub>d</sub>) ranged from 15.9 to 50.8 μM. The X-ray crystal structure of CYP107P2 was determined at 1.99 Å resolution, with a well-conserved overall P450 folding conformation. The terpenoid compound docking models illustrated that the structural interaction between monoterpenes and CYP107P2, with the distance between heme and terpenes ranging from 3.4 to 5.4 Å, indicates potential substrate binding for P450 enzyme. This study suggests that CYP107P2 is a <i>Streptomyces</i> P450 enzyme capable of catalyzing terpenes as substrates, signifying noteworthy advancements in comprehending a novel P450 enzyme's involvement in terpene reactions.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"474-480"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214959/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2024.045","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Streptomyces avermitilis genome includes 33 genes encoding monooxygenation-catalyzing cytochrome P450 enzymes. We investigated the structure of CYP107P2 and its interactions with terpenoid compounds. The recombinant CYP107P2 protein was expressed in Escherichia coli and the purified enzyme exhibited a typical P450 spectrum upon CO-binding in its reduced state. Type-I substrate-binding spectral titrations were observed with various terpenoid compounds, including α-pinene, β-pinene, α-terpinyl acetate, and (+)-3-carene. The calculated binding affinities (Kd) ranged from 15.9 to 50.8 μM. The X-ray crystal structure of CYP107P2 was determined at 1.99 Å resolution, with a well-conserved overall P450 folding conformation. The terpenoid compound docking models illustrated that the structural interaction between monoterpenes and CYP107P2, with the distance between heme and terpenes ranging from 3.4 to 5.4 Å, indicates potential substrate binding for P450 enzyme. This study suggests that CYP107P2 is a Streptomyces P450 enzyme capable of catalyzing terpenes as substrates, signifying noteworthy advancements in comprehending a novel P450 enzyme's involvement in terpene reactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
萜类化合物与 Streptomyces avermitilis CYP107P2 相互作用的结构见解。
Streptomyces avermitilis 基因组包括 33 个编码单氧催化细胞色素 P450 酶的基因。我们研究了 CYP107P2 的结构及其与萜类化合物的相互作用。重组 CYP107P2 蛋白在大肠杆菌中表达,纯化后的酶在还原状态下与 CO 结合时表现出典型的 P450 光谱。观察了与多种萜类化合物(包括α-蒎烯、β-蒎烯、α-松油醇乙酸酯和 (+)-3-蒈烯)的 I 型底物结合光谱滴定。计算得出的结合亲和力(Kd)范围为 15.9 至 50.8 μM。CYP107P2 的 X 射线晶体结构分辨率为 1.99 Å,具有保存完好的 P450 整体折叠构象。萜类化合物对接模型表明,单萜类化合物与 CYP107P2 之间存在结构相互作用,血红素与萜类化合物之间的距离为 3.4 至 5.4 Å,表明 P450 酶有可能与底物结合。这项研究表明,CYP107P2 是一种链霉菌 P450 酶,能够催化萜类化合物作为底物,这标志着在理解新型 P450 酶参与萜类化合物反应方面取得了显著进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
8.10%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.
期刊最新文献
A Novel Histone Deacetylase 6 Inhibitor, 4-FHA, Improves Scopolamine-Induced Cognitive and Memory Impairment in Mice. Allergy Inhibition Using Naturally Occurring Compounds Targeting Thymic Stromal Lymphopoietin Pathways: a Comprehensive Review. An Amphibians-Derived Protein Provides Novel Biotherapeutics for Various Wounds Treatment. Daurisoline Inhibits Progression of Triple-Negative Breast Cancer by Regulating the γ-Secretase/Notch Axis. Galangin Regulates Mucin 5AC Gene Expression via the Nuclear Factor-κB Inhibitor α/Nuclear Factor-κB p65 Pathway in Human Airway Epithelial Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1