首页 > 最新文献

Biomolecules & Therapeutics最新文献

英文 中文
Stress Accelerates Depressive-Like Behavior through Increase of SPNS2 Expression in Tg2576 Mice.
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-04-08 DOI: 10.4062/biomolther.2024.200
Seung Sik Yoo, Yuri Kim, Dong Won Lee, Hyeon Joo Ham, Jung Ho Park, In Jun Yeo, Ju Young Chang, Jaesuk Yun, Dong Ju Son, Sang-Bae Han, Jin Tae Hong

To investigate the relationship between depression and AD, water avoidance stress (WAS) was induced for 10 days in both Tg2576 mice and wild-type (WT) mice. After WAS, memory function and depressive-like behavior were investigated in Tg2576 mice. Tg2576 WAS mice exhibited more depressive-like behaviors than WT WAS and Tg2576 control (CON) mice. Strikingly, Tg2576 CON mice showed more depressive-like behaviors than WT mice. Moreover, corticosterone and phospho-glucocorticoid receptor (p-GR) levels were also higher in Tg2576 WAS mice in comparison to Tg2576 CON mice. Spinster homologue 2 (SPNS2) is a member of non-ATP-dependent transporter. The role of SPNS2 was widely known as a sphingosine-1-phosphate (S1P) transporter, which export intracellular S1P from cells. Using GEO database to analyze SPNS2 gene expression changes in patients with AD and depression, we show that SPNS2 gene expression correlates with AD and depression. Interestingly, Tg2576 WAS mice displayed significantly increased levels of SPNS2 w1hen compared to Tg2576 CON counterparts. SPNS2 levels were also higher in Tg2576 CON mice in comparison with WT CON mice. Remarkably, we found a decrease in S1P brain levels and an increase in S1P serum levels of Tg2576 WAS mice in comparison with Tg2576 CON mice. Accordingly, WAS induced group further decreased S1P levels in the brains. However, the level in the serum further increased in comparison with non-induced group. Therefore, these results suggest that AD and depression could be associated, and that Tg2576 transgenic mice are more susceptible to stress-induced depression through the release of S1P by SPNS2 up-regulation.

{"title":"Stress Accelerates Depressive-Like Behavior through Increase of SPNS2 Expression in Tg2576 Mice.","authors":"Seung Sik Yoo, Yuri Kim, Dong Won Lee, Hyeon Joo Ham, Jung Ho Park, In Jun Yeo, Ju Young Chang, Jaesuk Yun, Dong Ju Son, Sang-Bae Han, Jin Tae Hong","doi":"10.4062/biomolther.2024.200","DOIUrl":"https://doi.org/10.4062/biomolther.2024.200","url":null,"abstract":"<p><p>To investigate the relationship between depression and AD, water avoidance stress (WAS) was induced for 10 days in both Tg2576 mice and wild-type (WT) mice. After WAS, memory function and depressive-like behavior were investigated in Tg2576 mice. Tg2576 WAS mice exhibited more depressive-like behaviors than WT WAS and Tg2576 control (CON) mice. Strikingly, Tg2576 CON mice showed more depressive-like behaviors than WT mice. Moreover, corticosterone and phospho-glucocorticoid receptor (p-GR) levels were also higher in Tg2576 WAS mice in comparison to Tg2576 CON mice. Spinster homologue 2 (SPNS2) is a member of non-ATP-dependent transporter. The role of SPNS2 was widely known as a sphingosine-1-phosphate (S1P) transporter, which export intracellular S1P from cells. Using GEO database to analyze SPNS2 gene expression changes in patients with AD and depression, we show that SPNS2 gene expression correlates with AD and depression. Interestingly, Tg2576 WAS mice displayed significantly increased levels of SPNS2 w1hen compared to Tg2576 CON counterparts. SPNS2 levels were also higher in Tg2576 CON mice in comparison with WT CON mice. Remarkably, we found a decrease in S1P brain levels and an increase in S1P serum levels of Tg2576 WAS mice in comparison with Tg2576 CON mice. Accordingly, WAS induced group further decreased S1P levels in the brains. However, the level in the serum further increased in comparison with non-induced group. Therefore, these results suggest that AD and depression could be associated, and that Tg2576 transgenic mice are more susceptible to stress-induced depression through the release of S1P by SPNS2 up-regulation.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143802285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual Disruption of DNA Repair by a Novel CHK2 Inhibitor, ART-446, and Olaparib is a Promising Strategy for Triple-Negative Breast Cancer Therapy.
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-04-08 DOI: 10.4062/biomolther.2025.029
Hong-Jun Kang, Young-Woo Kang, Ha-Young Lee, Sojung Ha, Jong Oh Kim, Woo-Young Kim, Taegon Baik

Triple-negative breast cancer (TNBC) is an aggressive cancer subtype lacking targeted therapies and is characterized by high recurrence rates and poor prognosis. Recent advances in targeting DNA damage response (DDR) pathways using poly (ADP‒ribose) polymerase (PARP) inhibitors offer promising therapeutic strategies, especially for TNBC patients with BRCA1/2 mutations. This study reports the development and characterization of ART-446, a novel and selective CHK2 inhibitor. ART-446 showed potent activity against TNBC, regardless of BRCA deficiency, and it also reversed PARP inhibitor resistance. ART-446 potently inhibited CHK2 (IC50: 9.06 nM) with high selectivity over other kinases; it synergized with the PARP inhibitor olaparib, enhancing DNA damage, inducing G2/M cell cycle arrest, and promoting apoptosis in both BRCA-mutant and wild-type TNBC cells. Mechanistic analyses revealed that ART-446 sensitized BRCA mutant and WT cells to PARP inhibitors by impairing DNA repair and increasing the accumulation of DNA damage. Importantly, ART-446 disrupted both homologous recombination and nonhomologous end-joining repair pathways, addressing a key limitation of PARP inhibitor monotherapy-resistance in BRCA-proficient cancers. In vivo, the combination of ART-446 and olaparib significantly reduced tumor growth in TNBC xenograft models without noticeable toxicity. The combined treatment increased DNA damage signaling, as evidenced by elevated γH2AX levels, and enhanced the sensitivity of BRCA2-deficient cells to ART-446. These findings underscore the potential of ART-446 to exploit DNA repair deficiencies and overcome resistance mechanisms associated with PARP inhibitors. By addressing the limitations of current treatments and expanding the utility of PARP inhibitors, ART-446 represents a promising candidate for DDR-targeted therapies, offering a novel approach to improve the outcomes of patients with TNBC.

{"title":"Dual Disruption of DNA Repair by a Novel CHK2 Inhibitor, ART-446, and Olaparib is a Promising Strategy for Triple-Negative Breast Cancer Therapy.","authors":"Hong-Jun Kang, Young-Woo Kang, Ha-Young Lee, Sojung Ha, Jong Oh Kim, Woo-Young Kim, Taegon Baik","doi":"10.4062/biomolther.2025.029","DOIUrl":"https://doi.org/10.4062/biomolther.2025.029","url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is an aggressive cancer subtype lacking targeted therapies and is characterized by high recurrence rates and poor prognosis. Recent advances in targeting DNA damage response (DDR) pathways using poly (ADP‒ribose) polymerase (PARP) inhibitors offer promising therapeutic strategies, especially for TNBC patients with BRCA1/2 mutations. This study reports the development and characterization of ART-446, a novel and selective CHK2 inhibitor. ART-446 showed potent activity against TNBC, regardless of BRCA deficiency, and it also reversed PARP inhibitor resistance. ART-446 potently inhibited CHK2 (IC<sub>50</sub>: 9.06 nM) with high selectivity over other kinases; it synergized with the PARP inhibitor olaparib, enhancing DNA damage, inducing G2/M cell cycle arrest, and promoting apoptosis in both BRCA-mutant and wild-type TNBC cells. Mechanistic analyses revealed that ART-446 sensitized BRCA mutant and WT cells to PARP inhibitors by impairing DNA repair and increasing the accumulation of DNA damage. Importantly, ART-446 disrupted both homologous recombination and nonhomologous end-joining repair pathways, addressing a key limitation of PARP inhibitor monotherapy-resistance in BRCA-proficient cancers. <i>In vivo</i>, the combination of ART-446 and olaparib significantly reduced tumor growth in TNBC xenograft models without noticeable toxicity. The combined treatment increased DNA damage signaling, as evidenced by elevated γH2AX levels, and enhanced the sensitivity of BRCA2-deficient cells to ART-446. These findings underscore the potential of ART-446 to exploit DNA repair deficiencies and overcome resistance mechanisms associated with PARP inhibitors. By addressing the limitations of current treatments and expanding the utility of PARP inhibitors, ART-446 represents a promising candidate for DDR-targeted therapies, offering a novel approach to improve the outcomes of patients with TNBC.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143802282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1,3,5-Tricaffeoylquinic Acid from Ipomoea batatas Vines Induced Ovarian Cancer Cell Apoptosis and Inhibited Endothelial Tube Formation.
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-04-08 DOI: 10.4062/biomolther.2024.239
Dahae Lee, Jaekyoung Kim, Soyoon Baek, Jin Woo Lee, Changyeol Lee, Ki Sung Kang, Sang Hee Shim

Ovarian cancer usually metastasizes from the ovary to adjacent organs through direct invasion with blood vessels formed by endothelial cells. Targeting apoptosis of ovarian cancer and angiogenesis is promising for anticancer therapy. Leaves of Ipomoea sp. have reportedly shown promise in treating ovarian cancer. Here, we investigated the apoptosis-inducing and anti-angiogenic effects of compounds isolated from Ipomoea batatas vines (IBV). Phytochemical examination of IBV led to the isolation and verification of eight compounds (1-8): chlorogenic acid (1), 3,4-dicaffeoylquinic acid (2), 3,5-dicaffeoylquinic acid (3), 4,5-dicaffeoylquinic acid (4), 1,3,5-tricaffeoylquinic acid (5), N-trans-feruloyltyramine (6), scopoletin (7), and esculetin (8). Of these, 1,3,5-tricaffeoylquinic acid (5) showed the highest cytotoxicity in A2780 human ovarian cancer cells, inducing apoptotic death in more than 37% cells and decreasing viability to less than 25% at 100 μM. Compound 5 increased the levels of cleaved caspase-8, Bax, cleaved PARP, and caspase-3/9, and decreased the levels of cleaved Bcl-2. Further, 5 inhibited tubule formation in HUVECs. VEGFR2, ERK, PI3K, Akt, and mTOR protein expression was also suppressed by 5. Then, a simple, rapid, and reliable LC-MS/ MS method was developed to determine the contents of the isolated compounds from IBV. Overall, 5 has potential for treating ovarian cancer as it induces apoptosis in ovarian cancer cells and inhibits tube formation.

{"title":"1,3,5-Tricaffeoylquinic Acid from <i>Ipomoea batatas</i> Vines Induced Ovarian Cancer Cell Apoptosis and Inhibited Endothelial Tube Formation.","authors":"Dahae Lee, Jaekyoung Kim, Soyoon Baek, Jin Woo Lee, Changyeol Lee, Ki Sung Kang, Sang Hee Shim","doi":"10.4062/biomolther.2024.239","DOIUrl":"https://doi.org/10.4062/biomolther.2024.239","url":null,"abstract":"<p><p>Ovarian cancer usually metastasizes from the ovary to adjacent organs through direct invasion with blood vessels formed by endothelial cells. Targeting apoptosis of ovarian cancer and angiogenesis is promising for anticancer therapy. Leaves of <i>Ipomoea</i> sp. have reportedly shown promise in treating ovarian cancer. Here, we investigated the apoptosis-inducing and anti-angiogenic effects of compounds isolated from <i>Ipomoea batatas</i> vines (IBV). Phytochemical examination of IBV led to the isolation and verification of eight compounds (<b>1-8</b>): chlorogenic acid (<b>1</b>), 3,4-dicaffeoylquinic acid (<b>2</b>), 3,5-dicaffeoylquinic acid (<b>3</b>), 4,5-dicaffeoylquinic acid (<b>4</b>), 1,3,5-tricaffeoylquinic acid (<b>5</b>), <i>N-trans</i>-feruloyltyramine (<b>6</b>), scopoletin (<b>7</b>), and esculetin (<b>8</b>). Of these, 1,3,5-tricaffeoylquinic acid (<b>5</b>) showed the highest cytotoxicity in A2780 human ovarian cancer cells, inducing apoptotic death in more than 37% cells and decreasing viability to less than 25% at 100 μM. Compound <b>5</b> increased the levels of cleaved caspase-8, Bax, cleaved PARP, and caspase-3/9, and decreased the levels of cleaved Bcl-2. Further, <b>5</b> inhibited tubule formation in HUVECs. VEGFR2, ERK, PI3K, Akt, and mTOR protein expression was also suppressed by <b>5</b>. Then, a simple, rapid, and reliable LC-MS/ MS method was developed to determine the contents of the isolated compounds from IBV. Overall, <b>5</b> has potential for treating ovarian cancer as it induces apoptosis in ovarian cancer cells and inhibits tube formation.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143802280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Andrographolide as a Multi-Target Therapeutic Agent in Diabetic Nephropathy: Insights into STAT3/PI3K/Akt Pathway Modulation.
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-04-04 DOI: 10.4062/biomolther.2024.209
Yuan Yin, Jing He, Yu Fang, Min Wei, Wang Zhang

Diabetic nephropathy (DN) remains a leading cause of end-stage renal disease (ESRD), driven by chronic inflammation, oxidative stress, and apoptosis. Current therapies targeting glycemic and blood pressure control fail to address the underlying molecular mechanisms of DN. This study investigates the therapeutic potential of andrographolide (AD), a diterpenoid lactone from Andrographis paniculata, in mitigating DN by modulating key molecular pathways. Through integrative network pharmacology, molecular docking, and in vivo/in vitro experiments, 107 overlapping DN-related targets were identified, with STAT3, PI3K, and AKT1 emerging as core nodes. Molecular docking revealed high binding affinities between AD and these targets, supporting its modulatory potential. In vivo, AD significantly improved renal function in streptozotocin-induced DN rats, reducing proteinuria, glomerular hypertrophy, and renal fibrosis. AD also attenuated oxidative stress, decreased pro-inflammatory cytokine levels, and enhanced antioxidant enzyme activities, demonstrating systemic anti-inflammatory and antioxidative effects. In vitro studies further confirmed that AD alleviates podocyte oxidative stress and apoptosis under high glucose conditions by suppressing the RAGE-NF-κB and STAT3/PI3K/Akt pathways. Histological analyses revealed substantial improvements in renal architecture, including reductions in fibrosis and mesangial expansion. These results underscore AD's multi-target mechanism, directly addressing DN's core pathological drivers, including inflammation, oxidative stress, and apoptosis. As a natural compound with notable safety and efficacy, AD holds promise as an adjunct or standalone therapeutic agent for DN. This study establishes a robust preclinical foundation for AD, warranting further exploration in clinical trials and its potential application in other diabetic complications.

{"title":"Andrographolide as a Multi-Target Therapeutic Agent in Diabetic Nephropathy: Insights into STAT3/PI3K/Akt Pathway Modulation.","authors":"Yuan Yin, Jing He, Yu Fang, Min Wei, Wang Zhang","doi":"10.4062/biomolther.2024.209","DOIUrl":"https://doi.org/10.4062/biomolther.2024.209","url":null,"abstract":"<p><p>Diabetic nephropathy (DN) remains a leading cause of end-stage renal disease (ESRD), driven by chronic inflammation, oxidative stress, and apoptosis. Current therapies targeting glycemic and blood pressure control fail to address the underlying molecular mechanisms of DN. This study investigates the therapeutic potential of andrographolide (AD), a diterpenoid lactone from Andrographis paniculata, in mitigating DN by modulating key molecular pathways. Through integrative network pharmacology, molecular docking, and <i>in vivo</i>/<i>in vitro</i> experiments, 107 overlapping DN-related targets were identified, with STAT3, PI3K, and AKT1 emerging as core nodes. Molecular docking revealed high binding affinities between AD and these targets, supporting its modulatory potential. <i>In vivo</i>, AD significantly improved renal function in streptozotocin-induced DN rats, reducing proteinuria, glomerular hypertrophy, and renal fibrosis. AD also attenuated oxidative stress, decreased pro-inflammatory cytokine levels, and enhanced antioxidant enzyme activities, demonstrating systemic anti-inflammatory and antioxidative effects. <i>In vitro</i> studies further confirmed that AD alleviates podocyte oxidative stress and apoptosis under high glucose conditions by suppressing the RAGE-NF-κB and STAT3/PI3K/Akt pathways. Histological analyses revealed substantial improvements in renal architecture, including reductions in fibrosis and mesangial expansion. These results underscore AD's multi-target mechanism, directly addressing DN's core pathological drivers, including inflammation, oxidative stress, and apoptosis. As a natural compound with notable safety and efficacy, AD holds promise as an adjunct or standalone therapeutic agent for DN. This study establishes a robust preclinical foundation for AD, warranting further exploration in clinical trials and its potential application in other diabetic complications.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143778892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microplastics Accumulation Induces Kynurenine-Derived Neurotoxicity in Cerebral Organoids and Mouse Brain.
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-04-04 DOI: 10.4062/biomolther.2024.185
Sung Bum Park, Jeong Hyeon Jo, Seong Soon Kim, Won Hoon Jung, Myung Ae Bae, Byumseok Koh, Ki Young Kim

Microplastics are pervasive environmental pollutants with potential adverse effects on human health, particularly concerning neurotoxicity. This study investigates the accumulation and neurotoxic effects of MP in cerebral organoids and mouse brains. Utilizing in vitro cerebral organoids and in vivo mouse models, we examined the penetration of MP, revealing that smaller MP (50 nm) infiltrated deeper into the organoids compared to larger ones (100 nm). Exposure to 50 nm MP resulted in a significant reduction in organoid viability. Furthermore, total RNA sequencing indicated substantial alterations in neurotoxicity-related gene expression. In vivo, MP-treated mice exhibited notable DNA fragmentation in the hippocampus and cortex, alongside elevated levels of inflammatory markers and neurotoxic metabolites, such as kynurenine (KYN) and 3-hydroxykynurenine (3-HK). Our findings suggest that MP may promote neurotoxicity through the kynurenine pathway, leading to heightened levels of neurotoxic compounds like quinolinic acid. This research highlights the potential for MP to induce neuroinflammatory responses and disrupt normal brain function, underscoring the need for further investigation into the long-term effects of MP exposure on neurological health.

{"title":"Microplastics Accumulation Induces Kynurenine-Derived Neurotoxicity in Cerebral Organoids and Mouse Brain.","authors":"Sung Bum Park, Jeong Hyeon Jo, Seong Soon Kim, Won Hoon Jung, Myung Ae Bae, Byumseok Koh, Ki Young Kim","doi":"10.4062/biomolther.2024.185","DOIUrl":"https://doi.org/10.4062/biomolther.2024.185","url":null,"abstract":"<p><p>Microplastics are pervasive environmental pollutants with potential adverse effects on human health, particularly concerning neurotoxicity. This study investigates the accumulation and neurotoxic effects of MP in cerebral organoids and mouse brains. Utilizing <i>in vitro</i> cerebral organoids and <i>in vivo</i> mouse models, we examined the penetration of MP, revealing that smaller MP (50 nm) infiltrated deeper into the organoids compared to larger ones (100 nm). Exposure to 50 nm MP resulted in a significant reduction in organoid viability. Furthermore, total RNA sequencing indicated substantial alterations in neurotoxicity-related gene expression. <i>In vivo</i>, MP-treated mice exhibited notable DNA fragmentation in the hippocampus and cortex, alongside elevated levels of inflammatory markers and neurotoxic metabolites, such as kynurenine (KYN) and 3-hydroxykynurenine (3-HK). Our findings suggest that MP may promote neurotoxicity through the kynurenine pathway, leading to heightened levels of neurotoxic compounds like quinolinic acid. This research highlights the potential for MP to induce neuroinflammatory responses and disrupt normal brain function, underscoring the need for further investigation into the long-term effects of MP exposure on neurological health.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143778896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The SIRT6 Activator MDL-800 Inhibits PPARα and Fatty acid Oxidation-Related Gene Expression in Hepatocytes.
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-04-04 DOI: 10.4062/biomolther.2024.251
Yeonsoo Kim, Hyeokjin Lim, Ye Eun Cho, Seonghwan Hwang

A histone deacetylase SIRT6 regulates the transcription of various genes involved in lipid metabolism. Fatty acid (FA) oxidation plays a pivotal role in maintaining hepatic lipid homeostasis, and its dysregulation significantly contributes to lipotoxicity and inflammation, driving the progression of steatotic liver disease. While SIRT6 is known to activate peroxisome proliferator-activated receptor-alpha (PPARα), a central regulator of FA oxidation, the development of SIRT6 activators capable of enhancing FA oxidation and mitigating steatotic liver disease has yet to be achieved. This study evaluated the effect of MDL-800, a selective SIRT6 activator, on the expression of PPARα and genes related to FA oxidation. In AML12 mouse hepatocytes, MDL-800 treatment activated SIRT6 but unexpectedly decreased the expression of PPARα and its FA oxidation-associated target genes. Furthermore, OSS128167, a selective SIRT6 inhibitor, did not reverse the suppressive effects of MDL-800 on PPARα, suggesting that MDL-800 downregulates PPARα and FA oxidation-related genes through a mechanism independent of SIRT6 activation. Mechanistic investigations revealed that MDL-800 increased the production of reactive oxygen species and activated stress kinases. The inhibition of PPARα by MDL-800 was reversed by co-treatment with the antioxidant N-acetylcysteine or the JNK inhibitor SP600125. In summary, MDL-800 suppresses PPARα and FA oxidation-related genes primarily through the induction of oxidative stress in hepatocytes, independent of its role as a SIRT6 activator.

{"title":"The SIRT6 Activator MDL-800 Inhibits PPARα and Fatty acid Oxidation-Related Gene Expression in Hepatocytes.","authors":"Yeonsoo Kim, Hyeokjin Lim, Ye Eun Cho, Seonghwan Hwang","doi":"10.4062/biomolther.2024.251","DOIUrl":"https://doi.org/10.4062/biomolther.2024.251","url":null,"abstract":"<p><p>A histone deacetylase SIRT6 regulates the transcription of various genes involved in lipid metabolism. Fatty acid (FA) oxidation plays a pivotal role in maintaining hepatic lipid homeostasis, and its dysregulation significantly contributes to lipotoxicity and inflammation, driving the progression of steatotic liver disease. While SIRT6 is known to activate peroxisome proliferator-activated receptor-alpha (PPARα), a central regulator of FA oxidation, the development of SIRT6 activators capable of enhancing FA oxidation and mitigating steatotic liver disease has yet to be achieved. This study evaluated the effect of MDL-800, a selective SIRT6 activator, on the expression of PPARα and genes related to FA oxidation. In AML12 mouse hepatocytes, MDL-800 treatment activated SIRT6 but unexpectedly decreased the expression of PPARα and its FA oxidation-associated target genes. Furthermore, OSS128167, a selective SIRT6 inhibitor, did not reverse the suppressive effects of MDL-800 on PPARα, suggesting that MDL-800 downregulates PPARα and FA oxidation-related genes through a mechanism independent of SIRT6 activation. Mechanistic investigations revealed that MDL-800 increased the production of reactive oxygen species and activated stress kinases. The inhibition of PPARα by MDL-800 was reversed by co-treatment with the antioxidant N-acetylcysteine or the JNK inhibitor SP600125. In summary, MDL-800 suppresses PPARα and FA oxidation-related genes primarily through the induction of oxidative stress in hepatocytes, independent of its role as a SIRT6 activator.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143810267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cynaropicrin Induces Reactive Oxygen Species-Dependent Paraptosis-Like Cell Death in Human Liver Cancer Cells. 西那匹克林诱导人肝癌细胞中活性氧依赖性跃迁样细胞死亡
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-04-04 DOI: 10.4062/biomolther.2025.011
Min Yeong Kim, Hee-Jae Cha, Su Hyun Hong, Sung-Kwon Moon, Taeg Kyu Kwon, Young-Chae Chang, Gi Young Kim, Jin Won Hyun, A-Young Nam, Jung-Hyun Shim, Yung Hyun Choi

Cynaropicrin, a sesquiterpene lactone found in artichoke leaves exerts diverse pharmacological effects. This study investigated whether cynaropicrin has a paraptosis-like cell death effect in human hepatocellular carcinoma Hep3B cells in addition to the apoptotic effects reported in several cancer cell lines. Cynaropicrin-induced cytotoxicity and cytoplasmic vacuolation, a key characteristic of paraptosis, were not ameliorated by inhibitors of necroptosis, autophagy, or pan caspase inhibitors in Hep3B cells. Our study showed that cynaropicrin-induced cytotoxicity was accompanied by mitochondrial dysfunction and endoplasmic reticulum stress along with increased cellular calcium ion levels. These effects were significantly mitigated by endoplasmic reticulum stress inhibitor or protein synthesis inhibitor. Moreover, cynaropicrin treatment in Hep3B cells increased reactive oxygen species generation and downregulated apoptosis-linked gene 2-interacting protein X (Alix), a protein that inhibits paraptosis. The addition of the reactive oxygen species scavenger N-acetyl-L-cysteine (NAC) neutralized cynaropicrin-induced changes in Alix expression and endoplasmic reticulum stress marker proteins counteracting endoplasmic reticulum stress and mitochondrial impairment. This demonstrates a close relationship between endoplasmic reticulum stress and reactive oxygen species generation. Additionally, cynaropicrin activated p38 mitogen activated protein kinase and a selective p38 mitogen activated protein kinase blocker alleviated the biological phenomena induced by cynaropicrin. NAC pretreatment showed the best reversal of cynaropicrin induced vacuolation and cellular inactivity. Our findings suggest that cynaropicrin induced oxidative stress in Hep3B cells contributes to paraptotic events including endoplasmic reticulum stress and mitochondrial damage.

洋蓟素是洋蓟叶中的一种倍半萜内酯,具有多种药理作用。本研究探讨了除了在几种癌细胞系中报道的凋亡效应外,辣木次黄嘌呤是否在人肝癌 Hep3B 细胞中具有类似凋亡的细胞死亡效应。在 Hep3B 细胞中,坏死抑制剂、自噬抑制剂或泛 Caspase 抑制剂都不能改善犬喹啉诱导的细胞毒性和细胞质空泡化(paraptosis 的一个关键特征)。我们的研究表明,卡泊三醇诱导的细胞毒性伴随着线粒体功能障碍和内质网应激以及细胞钙离子水平的升高。内质网应激抑制剂或蛋白质合成抑制剂可明显减轻这些影响。此外,在 Hep3B 细胞中使用卡那霉素会增加活性氧的生成,并下调与细胞凋亡相关的基因 2 交互蛋白 X(Alix)(一种抑制凋亡的蛋白质)。加入活性氧清除剂 N-乙酰-L-半胱氨酸(NAC)可以中和卡诺匹克林诱导的 Alix 表达和内质网应激标志蛋白的变化,从而抵消内质网应激和线粒体损伤。这证明了内质网应激与活性氧生成之间的密切关系。此外,卡泊三醇可激活 p38 丝裂原活化蛋白激酶,而选择性 p38 丝裂原活化蛋白激酶阻断剂可减轻卡泊三醇诱导的生物现象。NAC 预处理能最好地逆转三硝基吡啶诱导的空泡化和细胞失活现象。我们的研究结果表明,氯化苦在 Hep3B 细胞中诱导的氧化应激导致了包括内质网应激和线粒体损伤在内的副aptotic 事件。
{"title":"Cynaropicrin Induces Reactive Oxygen Species-Dependent Paraptosis-Like Cell Death in Human Liver Cancer Cells.","authors":"Min Yeong Kim, Hee-Jae Cha, Su Hyun Hong, Sung-Kwon Moon, Taeg Kyu Kwon, Young-Chae Chang, Gi Young Kim, Jin Won Hyun, A-Young Nam, Jung-Hyun Shim, Yung Hyun Choi","doi":"10.4062/biomolther.2025.011","DOIUrl":"https://doi.org/10.4062/biomolther.2025.011","url":null,"abstract":"<p><p>Cynaropicrin, a sesquiterpene lactone found in artichoke leaves exerts diverse pharmacological effects. This study investigated whether cynaropicrin has a paraptosis-like cell death effect in human hepatocellular carcinoma Hep3B cells in addition to the apoptotic effects reported in several cancer cell lines. Cynaropicrin-induced cytotoxicity and cytoplasmic vacuolation, a key characteristic of paraptosis, were not ameliorated by inhibitors of necroptosis, autophagy, or pan caspase inhibitors in Hep3B cells. Our study showed that cynaropicrin-induced cytotoxicity was accompanied by mitochondrial dysfunction and endoplasmic reticulum stress along with increased cellular calcium ion levels. These effects were significantly mitigated by endoplasmic reticulum stress inhibitor or protein synthesis inhibitor. Moreover, cynaropicrin treatment in Hep3B cells increased reactive oxygen species generation and downregulated apoptosis-linked gene 2-interacting protein X (Alix), a protein that inhibits paraptosis. The addition of the reactive oxygen species scavenger <i>N</i>-acetyl-L-cysteine (NAC) neutralized cynaropicrin-induced changes in Alix expression and endoplasmic reticulum stress marker proteins counteracting endoplasmic reticulum stress and mitochondrial impairment. This demonstrates a close relationship between endoplasmic reticulum stress and reactive oxygen species generation. Additionally, cynaropicrin activated p38 mitogen activated protein kinase and a selective p38 mitogen activated protein kinase blocker alleviated the biological phenomena induced by cynaropicrin. NAC pretreatment showed the best reversal of cynaropicrin induced vacuolation and cellular inactivity. Our findings suggest that cynaropicrin induced oxidative stress in Hep3B cells contributes to paraptotic events including endoplasmic reticulum stress and mitochondrial damage.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143778894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resveratrol from Peanut Sprout Extract Promotes NK Cell Activation and Antitumor Activity.
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-01 Epub Date: 2025-02-20 DOI: 10.4062/biomolther.2024.133
Hyunmin Chung, Seong Ho Bak, Eunju Shin, Taeho Park, Jinwoo Kim, Hanseul Jeong, Haiyoung Jung, Suk Ran Yoon, Ji-Yoon Noh

Natural killer (NK) cells are innate immune cells that are crucial for anticancer activity and have been developed as an immune cell therapy for leukemia. However, their limited effectiveness against solid tumors has prompted research into methods to enhance NK cell activity through combination therapies. Health supplements capable of boosting immune surveillance against tumor cells are gaining attention owing to their potential benefits. Resveratrol, a stilbenoid produced by several plants including peanuts and grapes, reportedly exerts anticancer effects and can activate immune cells. The peanut sprout extract cultivated with fermented sawdust medium (PSEFS) is rich in resveratrol, leveraging its health benefits in terms of the dry weight of herbal products, thus maximizing the utilization of resveratrol's beneficial properties. Our study compared the efficacy of resveratrol and PSEFS and revealed that PSEFS significantly enhanced NK cell activation compared with an equivalent dose of resveratrol. We investigated the ability of PSEFS to potentiate NK cell anticancer activity, focusing on NK cell survival, tumor cell lysis, and NK cell activation in PSEFS-administered mice. Our findings suggest that PSEFS could be a potential NK cell booster for cancer immunotherapy.

{"title":"Resveratrol from Peanut Sprout Extract Promotes NK Cell Activation and Antitumor Activity.","authors":"Hyunmin Chung, Seong Ho Bak, Eunju Shin, Taeho Park, Jinwoo Kim, Hanseul Jeong, Haiyoung Jung, Suk Ran Yoon, Ji-Yoon Noh","doi":"10.4062/biomolther.2024.133","DOIUrl":"10.4062/biomolther.2024.133","url":null,"abstract":"<p><p>Natural killer (NK) cells are innate immune cells that are crucial for anticancer activity and have been developed as an immune cell therapy for leukemia. However, their limited effectiveness against solid tumors has prompted research into methods to enhance NK cell activity through combination therapies. Health supplements capable of boosting immune surveillance against tumor cells are gaining attention owing to their potential benefits. Resveratrol, a stilbenoid produced by several plants including peanuts and grapes, reportedly exerts anticancer effects and can activate immune cells. The peanut sprout extract cultivated with fermented sawdust medium (PSEFS) is rich in resveratrol, leveraging its health benefits in terms of the dry weight of herbal products, thus maximizing the utilization of resveratrol's beneficial properties. Our study compared the efficacy of resveratrol and PSEFS and revealed that PSEFS significantly enhanced NK cell activation compared with an equivalent dose of resveratrol. We investigated the ability of PSEFS to potentiate NK cell anticancer activity, focusing on NK cell survival, tumor cell lysis, and NK cell activation in PSEFS-administered mice. Our findings suggest that PSEFS could be a potential NK cell booster for cancer immunotherapy.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"355-364"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893499/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143456616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artesunate Inhibits the Proliferation and Migration of Cutaneous Squamous Cell Carcinoma by Regulating the SLC7A11-GPX4 Pathway via the p300-p53 Axis.
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-01 Epub Date: 2025-02-24 DOI: 10.4062/biomolther.2024.156
Xinyan Huang, Wenxi Wang, Songzhao Zhang, Lili Li, Jihui Huang

The incidence of cutaneous squamous cell carcinoma (CSCC) is increasing rapidly. This study discussed the effects of artesunate (ART) on CSCC cell proliferation and migration via the solute carrier family 7 member 11 (SLC7A11)-glutathione peroxidase 4 (GPX4) pathway. MTT assessed cell viability and analyzed the IC50 value (69.26 μM). Accordingly, human CSCC cells (A431) were cultured in vitro, and treated with 70 μM ART, Ferrostatin-1, oe-SLC7A11, and C646, with cell biological behavior assessed. The potential targets of ART were predicted. p53 acetylation and protein stability and ART-p300 binding were examined. Thymusless nude mice were subcutaneously inoculated with A431 cells, and treated with ART and C646. ART-treated A431 cells showed weakened proliferation, migration, lactate dehydrogenase levels, oxidized glutathione/glutathione ratio, reactive oxygen species, malondialdehyde, and active Fe2+ levels, which could be reversed by suppressing ferroptosis. ART promoted p53 acetylation and protein stability and curbed the SLC7A11-GPX4 pathway by targeting p300. ART stimulated ferroptosis via the SLC7A11-GPX4 pathway, thereby repressing CSCC cell proliferation and migration, which were counteracted by p300 inhibition. ART regulated the SLC7A11-GPX4 pathway by up-regulating the p300-p53 axis, thereby hindering tumor growth in vivo. Collectively, ART inhibits CSCC proliferation and migration by modulating the SLC7A11-GPX4 pathway through the p300-p53 axis.

{"title":"Artesunate Inhibits the Proliferation and Migration of Cutaneous Squamous Cell Carcinoma by Regulating the SLC7A11-GPX4 Pathway via the p300-p53 Axis.","authors":"Xinyan Huang, Wenxi Wang, Songzhao Zhang, Lili Li, Jihui Huang","doi":"10.4062/biomolther.2024.156","DOIUrl":"10.4062/biomolther.2024.156","url":null,"abstract":"<p><p>The incidence of cutaneous squamous cell carcinoma (CSCC) is increasing rapidly. This study discussed the effects of artesunate (ART) on CSCC cell proliferation and migration via the solute carrier family 7 member 11 (SLC7A11)-glutathione peroxidase 4 (GPX4) pathway. MTT assessed cell viability and analyzed the IC<sub>50</sub> value (69.26 μM). Accordingly, human CSCC cells (A431) were cultured <i>in vitro</i>, and treated with 70 μM ART, Ferrostatin-1, oe-SLC7A11, and C646, with cell biological behavior assessed. The potential targets of ART were predicted. p53 acetylation and protein stability and ART-p300 binding were examined. Thymusless nude mice were subcutaneously inoculated with A431 cells, and treated with ART and C646. ART-treated A431 cells showed weakened proliferation, migration, lactate dehydrogenase levels, oxidized glutathione/glutathione ratio, reactive oxygen species, malondialdehyde, and active Fe<sup>2+</sup> levels, which could be reversed by suppressing ferroptosis. ART promoted p53 acetylation and protein stability and curbed the SLC7A11-GPX4 pathway by targeting p300. ART stimulated ferroptosis via the SLC7A11-GPX4 pathway, thereby repressing CSCC cell proliferation and migration, which were counteracted by p300 inhibition. ART regulated the SLC7A11-GPX4 pathway by up-regulating the p300-p53 axis, thereby hindering tumor growth <i>in vivo</i>. Collectively, ART inhibits CSCC proliferation and migration by modulating the SLC7A11-GPX4 pathway through the p300-p53 axis.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"365-377"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893488/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143482122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Piperine Regulates Melanogenesis through ERK Activation and Proteasomal Degradation of MITF. 胡椒碱通过ERK激活和蛋白酶体降解MITF调节黑色素生成
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-01 Epub Date: 2025-02-12 DOI: 10.4062/biomolther.2024.065
Jun Hyeong Lee, Jieun Lee, Sukanya Dej-Adisai, Jae Sung Hwang

Melanin is a bio-pigment molecule synthesized by melanocytes. Its role is to shield the skin from ultraviolet radiation. Nonetheless, aberrant melanin production, whether excessive or deficient, can lead to conditions such as vitiligo, freckles, melanocytic nevi, and even melanoma. The biosynthetic pathway of melanin is known as melanogenesis, which is regulated by various transcription factors and enzymatic processes. Piperine (PPN), an alkaloid compound extracted from Piper retrofractum Vahl., was investigated for its potential anti-fungal and anti-inflammatory effects. Our hypothesis centered on the inhibition of melanin biosynthesis in response to PPN treatment. Subsequently, it was observed that PPN treatment resulted in a dose-dependent reduction in melanin production, accompanied by a decrease in tyrosinase activity. Furthermore, PPN was found to downregulate the protein levels of key melanogenesis-related genes. Additionally, PPN was observed to elevate the phosphorylation levels of ERK. To assess the role of ERK signaling in PPN-induced melanogenesis regulation, PD98059, an ERK inhibitor, was used. When Melan-A cells were treated with PD98059, the reduced expression level of MITF and melanin content induced by piperine were restored. Additionally, phosphorylation of ERK increased the phosphorylation of MITF at Ser73. This phosphorylated MITF leads to ubiquitination, and ultimately, the protein level of MITF decreases through proteasomal degradation. Likewise, when Melan-A cells were treated with MG132, a proteasomal inhibitor, the reduced expression level of MITF and melanin content induced by piperine were restored. Consequently, PPN can be a potential candidate for application as a skin whitening agent or in formulations to mitigate hyperpigmentation.

{"title":"Piperine Regulates Melanogenesis through ERK Activation and Proteasomal Degradation of MITF.","authors":"Jun Hyeong Lee, Jieun Lee, Sukanya Dej-Adisai, Jae Sung Hwang","doi":"10.4062/biomolther.2024.065","DOIUrl":"10.4062/biomolther.2024.065","url":null,"abstract":"<p><p>Melanin is a bio-pigment molecule synthesized by melanocytes. Its role is to shield the skin from ultraviolet radiation. Nonetheless, aberrant melanin production, whether excessive or deficient, can lead to conditions such as vitiligo, freckles, melanocytic nevi, and even melanoma. The biosynthetic pathway of melanin is known as melanogenesis, which is regulated by various transcription factors and enzymatic processes. Piperine (PPN), an alkaloid compound extracted from Piper retrofractum Vahl., was investigated for its potential anti-fungal and anti-inflammatory effects. Our hypothesis centered on the inhibition of melanin biosynthesis in response to PPN treatment. Subsequently, it was observed that PPN treatment resulted in a dose-dependent reduction in melanin production, accompanied by a decrease in tyrosinase activity. Furthermore, PPN was found to downregulate the protein levels of key melanogenesis-related genes. Additionally, PPN was observed to elevate the phosphorylation levels of ERK. To assess the role of ERK signaling in PPN-induced melanogenesis regulation, PD98059, an ERK inhibitor, was used. When Melan-A cells were treated with PD98059, the reduced expression level of MITF and melanin content induced by piperine were restored. Additionally, phosphorylation of ERK increased the phosphorylation of MITF at Ser73. This phosphorylated MITF leads to ubiquitination, and ultimately, the protein level of MITF decreases through proteasomal degradation. Likewise, when Melan-A cells were treated with MG132, a proteasomal inhibitor, the reduced expression level of MITF and melanin content induced by piperine were restored. Consequently, PPN can be a potential candidate for application as a skin whitening agent or in formulations to mitigate hyperpigmentation.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"408-414"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893493/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biomolecules & Therapeutics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1