Molecular design and architectonics towards film-based fluorescent sensing

IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Society Reviews Pub Date : 2024-06-05 DOI:10.1039/D4CS00347K
Rongrong Huang, Taihong Liu, Haonan Peng, Jing Liu, Xiaogang Liu, Liping Ding and Yu Fang
{"title":"Molecular design and architectonics towards film-based fluorescent sensing","authors":"Rongrong Huang, Taihong Liu, Haonan Peng, Jing Liu, Xiaogang Liu, Liping Ding and Yu Fang","doi":"10.1039/D4CS00347K","DOIUrl":null,"url":null,"abstract":"<p >The past few decades have witnessed encouraging progress in the development of high-performance film-based fluorescent sensors (FFSs) for detecting explosives, illicit drugs, chemical warfare agents (CWAs), and hazardous volatile organic chemicals (VOCs), among others. Several FFSs have transitioned from laboratory research to real-world applications, demonstrating their practical relevance. At the heart of FFS technology lies the sensing films, which play a crucial role in determining the analytes and the resulting signals. The selection of sensing fluorophores and the fabrication strategies employed in film construction are key factors that influence the fluorescence properties, active-layer structures, and overall sensing behaviors of these films. This review examines the progress and innovations in the research field of FFSs over the past two decades, focusing on advancements in fluorophore design and active-layer structural engineering. It underscores popular sensing fluorophore scaffolds and the dynamics of excited state processes. Additionally, it delves into six distinct categories of film fabrication technologies and strategies, providing insights into their advantages and limitations. This review further addresses important considerations such as photostability and substrate effects. Concluding with an overview of the field's challenges and prospects, it sheds light on the potential for further development in this burgeoning area.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":null,"pages":null},"PeriodicalIF":40.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cs/d4cs00347k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The past few decades have witnessed encouraging progress in the development of high-performance film-based fluorescent sensors (FFSs) for detecting explosives, illicit drugs, chemical warfare agents (CWAs), and hazardous volatile organic chemicals (VOCs), among others. Several FFSs have transitioned from laboratory research to real-world applications, demonstrating their practical relevance. At the heart of FFS technology lies the sensing films, which play a crucial role in determining the analytes and the resulting signals. The selection of sensing fluorophores and the fabrication strategies employed in film construction are key factors that influence the fluorescence properties, active-layer structures, and overall sensing behaviors of these films. This review examines the progress and innovations in the research field of FFSs over the past two decades, focusing on advancements in fluorophore design and active-layer structural engineering. It underscores popular sensing fluorophore scaffolds and the dynamics of excited state processes. Additionally, it delves into six distinct categories of film fabrication technologies and strategies, providing insights into their advantages and limitations. This review further addresses important considerations such as photostability and substrate effects. Concluding with an overview of the field's challenges and prospects, it sheds light on the potential for further development in this burgeoning area.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现薄膜荧光传感的分子设计和架构。
过去几十年来,用于检测爆炸物、违禁药物、化学战剂 (CWA) 和危险挥发性有机化学品 (VOC) 等的高性能薄膜荧光传感器 (FFS) 的开发取得了令人鼓舞的进展。一些 FFS 已从实验室研究过渡到实际应用,证明了它们的实用性。FFS 技术的核心是传感薄膜,它在确定分析物和由此产生的信号方面起着至关重要的作用。传感荧光团的选择和薄膜结构的制造策略是影响这些薄膜的荧光特性、活性层结构和整体传感行为的关键因素。本综述探讨了过去二十年来 FFS 研究领域的进展和创新,重点关注荧光团设计和活性层结构工程方面的进展。它强调了流行的传感荧光团支架和激发态过程的动态。此外,它还深入探讨了六类不同的薄膜制造技术和策略,深入剖析了它们的优势和局限性。本综述还进一步探讨了光稳定性和基底效应等重要因素。最后,它概述了这一领域的挑战和前景,为这一新兴领域的进一步发展潜力提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Society Reviews
Chemical Society Reviews 化学-化学综合
CiteScore
80.80
自引率
1.10%
发文量
345
审稿时长
6.0 months
期刊介绍: Chemical Society Reviews is published by: Royal Society of Chemistry. Focus: Review articles on topics of current interest in chemistry; Predecessors: Quarterly Reviews, Chemical Society (1947–1971); Current title: Since 1971; Impact factor: 60.615 (2021); Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences
期刊最新文献
Catalytic asymmetric synthesis of 1,2-diamines. Navigating the landscape of enzyme design: from molecular simulations to machine learning. Functionalized 2D membranes for separations at the 1-nm scale. Nature-inspired adhesive systems. Nucleic acid-based wearable and implantable electrochemical sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1