Research on the cavitation flow interference and impact loads of successively launched underwater projectiles

IF 3.6 2区 工程技术 Q1 MECHANICS International Journal of Multiphase Flow Pub Date : 2024-05-29 DOI:10.1016/j.ijmultiphaseflow.2024.104878
Shan Gao , Yao Shi , Shuai Zhang , Guang Pan
{"title":"Research on the cavitation flow interference and impact loads of successively launched underwater projectiles","authors":"Shan Gao ,&nbsp;Yao Shi ,&nbsp;Shuai Zhang ,&nbsp;Guang Pan","doi":"10.1016/j.ijmultiphaseflow.2024.104878","DOIUrl":null,"url":null,"abstract":"<div><p>The cavitation flow can have a great impact on the projectile's water-exit attitude and stability. At present, the research on cavitation flow is mainly focused on the single projectile, while less research has been conducted on the cavitation flow of projectiles successively launched underwater. In this paper, a verification of the flow simulation method and validation of the cavitation model is presented. The multiphase flow associated with cavitation flows, interference characteristics of the cavitation vortex structure, and load characteristics of the projectiles successively launched underwater are studied. The results show that owing to the flow interference, the attitude of the projectile is deflected to the outside. A large-scale cavity shedding phenomenon of the inside cavity occurs under the incoming flow. A large number of small-scale vortex rings appear above the water surface in the projectile that successively exited the water. As the cavitation number of the projectiles launched successively decreases, the turbulent vortex structure is gradually enriched. In addition, both the inside and the outside are subject to extremely high peak collapse loads. Remarkably, the peak pulsating pressure generated by the collapse of the cavity is strongly correlated with the state of the cavity when the head of the projectile touches the water surface.</p></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932224001551","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The cavitation flow can have a great impact on the projectile's water-exit attitude and stability. At present, the research on cavitation flow is mainly focused on the single projectile, while less research has been conducted on the cavitation flow of projectiles successively launched underwater. In this paper, a verification of the flow simulation method and validation of the cavitation model is presented. The multiphase flow associated with cavitation flows, interference characteristics of the cavitation vortex structure, and load characteristics of the projectiles successively launched underwater are studied. The results show that owing to the flow interference, the attitude of the projectile is deflected to the outside. A large-scale cavity shedding phenomenon of the inside cavity occurs under the incoming flow. A large number of small-scale vortex rings appear above the water surface in the projectile that successively exited the water. As the cavitation number of the projectiles launched successively decreases, the turbulent vortex structure is gradually enriched. In addition, both the inside and the outside are subject to extremely high peak collapse loads. Remarkably, the peak pulsating pressure generated by the collapse of the cavity is strongly correlated with the state of the cavity when the head of the projectile touches the water surface.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连续发射水下射弹的空化流干扰和冲击载荷研究
空化流对弹丸的出水姿态和稳定性有很大影响。目前,对空化流的研究主要集中在单发弹丸上,对水下连续发射弹丸的空化流研究较少。本文对流动模拟方法进行了验证,并对空化模型进行了验证。研究了与空化流相关的多相流、空化涡结构的干涉特性以及水下连续发射弹丸的载荷特性。结果表明,由于流动干扰,弹丸的姿态向外偏转。在射入流的作用下,内腔出现了大规模的空腔脱落现象。先后出水的弹丸在水面上方出现大量小尺度涡环。随着发射弹丸的空化数逐渐减少,湍流涡旋结构逐渐丰富。此外,内部和外部都承受着极高的峰值坍塌载荷。值得注意的是,空腔塌陷产生的峰值脉动压力与弹丸头部接触水面时的空腔状态密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
期刊最新文献
Experimental investigation of primary breakup in close-coupled gas atomization Morphology and dynamics of the liquid jet in high-speed gas-assisted atomization retrieved through synchrotron-based high-speed X-ray imaging Accelerated calculation of phase-variable for numerical simulation of multiphase flows Eulerian approach for erosion induced by particle-laden impinging jets Numerical study on enhanced-diffusion characteristics of kerosene jet in supersonic crossflow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1