Andrea J.C. Tam , Sierra D. Durham , Daniela Barile , Juliana M. L.N. de Moura Bell
{"title":"Application of hollow fiber membranes for producing an ultrafiltration permeate from colostrum whey enriched in bioactive compounds","authors":"Andrea J.C. Tam , Sierra D. Durham , Daniela Barile , Juliana M. L.N. de Moura Bell","doi":"10.1016/j.fbp.2024.05.013","DOIUrl":null,"url":null,"abstract":"<div><p>Bovine colostrum whey, despite being a source of bioactive peptides and prebiotic oligosaccharides with dietary and nutraceutical applications, presents significant processing challenges due to its high viscosity, making hollow fiber membranes, with their superior ability to control membrane fouling, well-suited for handling such fluids. The objective of this work was to determine optimal ultrafiltration conditions of a 10 kDa hollow fiber membrane to increase efficiency (i.e., permeate flux), selectively retain whey proteins, and facilitate the permeation of peptides (< 10,000 Da) and oligosaccharides (∼600 Da) from bovine colostrum whey. The impact of feed flow rate (3, 6, 9 L min<sup>-1</sup>) and transmembrane pressure (1, 2, 3 bar) were evaluated on permeate flux, protein retention, and non-protein nitrogen permeation. Higher permeate fluxes were observed at higher feed flows and moderate transmembrane pressure, demonstrating the ability of turbulence to disrupt the concentration polarization layer at the membrane surface and decrease fouling, as exhibited in the resistance analyses. Higher feed flow significantly increased the cumulative permeate flux during colostrum whey concentration (64.6 <span><math><mrow><mo>±</mo><mspace></mspace></mrow></math></span> 0.1 L h<sup>-1</sup>m<sup>-2</sup> at 9 L min<sup>-1</sup> vs. 12.5 <span><math><mo>±</mo></math></span> 5.9 L h<sup>-1</sup>m<sup>-2</sup> at 3 L min<sup>-1</sup>, at continuous diafiltration mode and 2 bar), with continuous diafiltration experiments yielding similar permeate fluxes to the ones achieved in discontinuous mode. Processing scale at 12.7 L (2 bar, 9 L min<sup>-1</sup>, and continuous diafiltration) enabled 97% protein retention and 95% peptide and oligosaccharide permeation, producing a permeate with 1.3 g L<sup>-1</sup> peptide and 0.42 g L<sup>-1</sup> oligosaccharide. The results of this study highlight the impact of key ultrafiltration conditions of bovine colostrum whey using a hollow fiber membrane for the effective recovery of peptides and oligosaccharides for subsequent evaluation of their biological properties and commercial applications.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S096030852400097X/pdfft?md5=72b88fb432083aed586f5f603c8974e9&pid=1-s2.0-S096030852400097X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioproducts Processing","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096030852400097X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bovine colostrum whey, despite being a source of bioactive peptides and prebiotic oligosaccharides with dietary and nutraceutical applications, presents significant processing challenges due to its high viscosity, making hollow fiber membranes, with their superior ability to control membrane fouling, well-suited for handling such fluids. The objective of this work was to determine optimal ultrafiltration conditions of a 10 kDa hollow fiber membrane to increase efficiency (i.e., permeate flux), selectively retain whey proteins, and facilitate the permeation of peptides (< 10,000 Da) and oligosaccharides (∼600 Da) from bovine colostrum whey. The impact of feed flow rate (3, 6, 9 L min-1) and transmembrane pressure (1, 2, 3 bar) were evaluated on permeate flux, protein retention, and non-protein nitrogen permeation. Higher permeate fluxes were observed at higher feed flows and moderate transmembrane pressure, demonstrating the ability of turbulence to disrupt the concentration polarization layer at the membrane surface and decrease fouling, as exhibited in the resistance analyses. Higher feed flow significantly increased the cumulative permeate flux during colostrum whey concentration (64.6 0.1 L h-1m-2 at 9 L min-1 vs. 12.5 5.9 L h-1m-2 at 3 L min-1, at continuous diafiltration mode and 2 bar), with continuous diafiltration experiments yielding similar permeate fluxes to the ones achieved in discontinuous mode. Processing scale at 12.7 L (2 bar, 9 L min-1, and continuous diafiltration) enabled 97% protein retention and 95% peptide and oligosaccharide permeation, producing a permeate with 1.3 g L-1 peptide and 0.42 g L-1 oligosaccharide. The results of this study highlight the impact of key ultrafiltration conditions of bovine colostrum whey using a hollow fiber membrane for the effective recovery of peptides and oligosaccharides for subsequent evaluation of their biological properties and commercial applications.
期刊介绍:
Official Journal of the European Federation of Chemical Engineering:
Part C
FBP aims to be the principal international journal for publication of high quality, original papers in the branches of engineering and science dedicated to the safe processing of biological products. It is the only journal to exploit the synergy between biotechnology, bioprocessing and food engineering.
Papers showing how research results can be used in engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in equipment or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of food and bioproducts processing.
The journal has a strong emphasis on the interface between engineering and food or bioproducts. Papers that are not likely to be published are those:
• Primarily concerned with food formulation
• That use experimental design techniques to obtain response surfaces but gain little insight from them
• That are empirical and ignore established mechanistic models, e.g., empirical drying curves
• That are primarily concerned about sensory evaluation and colour
• Concern the extraction, encapsulation and/or antioxidant activity of a specific biological material without providing insight that could be applied to a similar but different material,
• Containing only chemical analyses of biological materials.