{"title":"Propagation of high-temperature creep cracks in metals under the influence of hydrogen and neutron irradiation","authors":"Oleksandr Andreykiv , Iryna Dolinska , Sviatoslav Nastasiak , Orest Svirchevskyi","doi":"10.1016/j.prostr.2024.04.027","DOIUrl":null,"url":null,"abstract":"<div><p>The proposed computational model for crack propagation in high-temperature creep in metallic materials under the influence of a hydrogen environment and neutron irradiation is based on the first law of thermodynamics and the balance of the rates of change of energy components for an elementary crack propagation act in a metallic body under long-term static loading, high temperature, hydrogen-containing environments, and neutron irradiation. The application of the model for determining the residual life of bodies with cracks under the mentioned loading conditions in specified operational conditions is demonstrated using an analogy to Griffith’s problem, which represents a two-dimensional problem for thin-walled structural elements.</p></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":"59 ","pages":"Pages 182-189"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452321624003433/pdf?md5=fd03ecb901768b7568c61b51bc39a968&pid=1-s2.0-S2452321624003433-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452321624003433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The proposed computational model for crack propagation in high-temperature creep in metallic materials under the influence of a hydrogen environment and neutron irradiation is based on the first law of thermodynamics and the balance of the rates of change of energy components for an elementary crack propagation act in a metallic body under long-term static loading, high temperature, hydrogen-containing environments, and neutron irradiation. The application of the model for determining the residual life of bodies with cracks under the mentioned loading conditions in specified operational conditions is demonstrated using an analogy to Griffith’s problem, which represents a two-dimensional problem for thin-walled structural elements.