Accurate hyperfine tensors for solid state quantum applications: case of the NV center in diamond

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-06-04 DOI:10.1038/s42005-024-01668-9
István Takács, Viktor Ivády
{"title":"Accurate hyperfine tensors for solid state quantum applications: case of the NV center in diamond","authors":"István Takács, Viktor Ivády","doi":"10.1038/s42005-024-01668-9","DOIUrl":null,"url":null,"abstract":"The decoherence of point defect qubits is often governed by the electron spin-nuclear spin hyperfine interaction that can be parameterized by using ab inito calculations in principle. So far most of the theoretical works have focused on the hyperfine interaction of the closest nuclear spins, while the accuracy of the predictions for distinct nuclear spins is barely discussed. Here we demonstrate for the case of the NV center in diamond that the absolute relative error of the computed hyperfine parameters can exceed 100% using an industry standards first-principles code. To overcome this issue, we implement an alternative method and report on significantly improved hyperfine values with $${{{{{{{\\mathcal{O}}}}}}}}$$ (1%) relative mean error at all distances. The provided accurate hyperfine data for the NV center enables high-precision simulation of NV quantum nodes for quantum information processing and positioning of nuclear spins by comparing experimental and theoretical hyperfine data. Hyperfine interaction is the key term for utilizing individual nuclear spins in solids. This work introduces a method that yields high-accuracy hyperfine values for nuclear spins at arbitrary distances from addressable electron spins, such as the NV center in diamond.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01668-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01668-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The decoherence of point defect qubits is often governed by the electron spin-nuclear spin hyperfine interaction that can be parameterized by using ab inito calculations in principle. So far most of the theoretical works have focused on the hyperfine interaction of the closest nuclear spins, while the accuracy of the predictions for distinct nuclear spins is barely discussed. Here we demonstrate for the case of the NV center in diamond that the absolute relative error of the computed hyperfine parameters can exceed 100% using an industry standards first-principles code. To overcome this issue, we implement an alternative method and report on significantly improved hyperfine values with $${{{{{{{\mathcal{O}}}}}}}}$$ (1%) relative mean error at all distances. The provided accurate hyperfine data for the NV center enables high-precision simulation of NV quantum nodes for quantum information processing and positioning of nuclear spins by comparing experimental and theoretical hyperfine data. Hyperfine interaction is the key term for utilizing individual nuclear spins in solids. This work introduces a method that yields high-accuracy hyperfine values for nuclear spins at arbitrary distances from addressable electron spins, such as the NV center in diamond.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于固态量子应用的精确超频张量:金刚石中的 NV 中心案例
点缺陷量子比特的退相干通常受电子自旋-核自旋超精细相互作用的制约,而这种相互作用原则上可以通过反比初始计算进行参数化。迄今为止,大多数理论研究都集中在最接近的核自旋的超细相互作用上,而对不同核自旋的预测准确性几乎没有讨论。在这里,我们以金刚石中的 NV 中心为例,证明了使用工业标准第一原理代码计算出的超正弦参数的绝对相对误差可能超过 100%。为了克服这个问题,我们采用了另一种方法,并报告了在所有距离上相对平均误差为 $${{{{{{{\mathcal{O}}}}}}}}$ (1%) 的显著改进的超正弦值。为 NV 中心提供的精确超正弦数据可以通过比较实验和理论超正弦数据,高精度地模拟用于量子信息处理和核自旋定位的 NV 量子节点。超细相互作用是利用固体中单个核自旋的关键术语。这项工作介绍了一种方法,它能在核自旋与可寻址电子自旋(如金刚石中的 NV 中心)之间的任意距离上产生高精度的超精细值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Morphometry on the sphere: Cartesian and irreducible Minkowski tensors explained and implemented Correlation-driven topological Kondo superconductors Cell stiffening is a label-free indicator of reactive oxygen species-induced intracellular acidification Mitigating density fluctuations in particle-based active nematic simulations Enhancing shift current response via virtual multiband transitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1