Haocheng Xiong, Peiping Yu, Kedang Chen, Shike Lu, Qikun Hu, Tao Cheng, Bingjun Xu, Qi Lu
{"title":"Urea synthesis via electrocatalytic oxidative coupling of CO with NH3 on Pt","authors":"Haocheng Xiong, Peiping Yu, Kedang Chen, Shike Lu, Qikun Hu, Tao Cheng, Bingjun Xu, Qi Lu","doi":"10.1038/s41929-024-01173-w","DOIUrl":null,"url":null,"abstract":"Electrochemical conversion of CO to chemicals containing C–N bonds offers an appealing route to store renewable electricity and mitigate CO2 emission, as CO2 can be efficiently transformed to CO. Previous electrocatalysis research has primarily focused on cathodic reactions, which are impeded by the competing hydrogen evolution reaction and limited electron efficiency. Here we present a urea synthesis approach via electrocatalytic oxidative coupling between CO and NH3 on commercial Pt catalysts. We demonstrate an optimal selectivity of approximately 70% for urea and remain above 50% throughout a wide potential window with an electrocatalytic C–N bond formation rate of up to 100 mmol h−1 gcatalyst−1. In mechanistic investigations, we propose that the oxidative coupling of CO and NH3 on Pt leads to cyanate formation, followed by the Wöhler reaction to form urea. This approach offers a practical route for urea production with high electron efficiency by enabling Pt-catalysed reactions between CO and NH3. Electrocatalytic urea formation most commonly involves the co-reduction of NOx species with CO2. This limits overall energy efficiency as commodity-scale NOx is produced from N2 via NH3. The swings in nitrogen oxidation state can be minimized through direct oxidative electrocatalytic reaction of CO and NH3 to urea, as shown in this study.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 7","pages":"785-795"},"PeriodicalIF":42.8000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01173-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical conversion of CO to chemicals containing C–N bonds offers an appealing route to store renewable electricity and mitigate CO2 emission, as CO2 can be efficiently transformed to CO. Previous electrocatalysis research has primarily focused on cathodic reactions, which are impeded by the competing hydrogen evolution reaction and limited electron efficiency. Here we present a urea synthesis approach via electrocatalytic oxidative coupling between CO and NH3 on commercial Pt catalysts. We demonstrate an optimal selectivity of approximately 70% for urea and remain above 50% throughout a wide potential window with an electrocatalytic C–N bond formation rate of up to 100 mmol h−1 gcatalyst−1. In mechanistic investigations, we propose that the oxidative coupling of CO and NH3 on Pt leads to cyanate formation, followed by the Wöhler reaction to form urea. This approach offers a practical route for urea production with high electron efficiency by enabling Pt-catalysed reactions between CO and NH3. Electrocatalytic urea formation most commonly involves the co-reduction of NOx species with CO2. This limits overall energy efficiency as commodity-scale NOx is produced from N2 via NH3. The swings in nitrogen oxidation state can be minimized through direct oxidative electrocatalytic reaction of CO and NH3 to urea, as shown in this study.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.