Parnassus: An Automated Approach to Accurate, Precise, and Fast Detector Simulation and Reconstruction

Etienne Dreyer, Eilam Gross, Dmitrii Kobylianskii, Vinicius Mikuni, Benjamin Nachman, Nathalie Soybelman
{"title":"Parnassus: An Automated Approach to Accurate, Precise, and Fast Detector Simulation and Reconstruction","authors":"Etienne Dreyer, Eilam Gross, Dmitrii Kobylianskii, Vinicius Mikuni, Benjamin Nachman, Nathalie Soybelman","doi":"arxiv-2406.01620","DOIUrl":null,"url":null,"abstract":"Detector simulation and reconstruction are a significant computational\nbottleneck in particle physics. We develop Particle-flow Neural Assisted\nSimulations (Parnassus) to address this challenge. Our deep learning model\ntakes as input a point cloud (particles impinging on a detector) and produces a\npoint cloud (reconstructed particles). By combining detector simulations and\nreconstruction into one step, we aim to minimize resource utilization and\nenable fast surrogate models suitable for application both inside and outside\nlarge collaborations. We demonstrate this approach using a publicly available\ndataset of jets passed through the full simulation and reconstruction pipeline\nof the CMS experiment. We show that Parnassus accurately mimics the CMS\nparticle flow algorithm on the (statistically) same events it was trained on\nand can generalize to jet momentum and type outside of the training\ndistribution.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.01620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detector simulation and reconstruction are a significant computational bottleneck in particle physics. We develop Particle-flow Neural Assisted Simulations (Parnassus) to address this challenge. Our deep learning model takes as input a point cloud (particles impinging on a detector) and produces a point cloud (reconstructed particles). By combining detector simulations and reconstruction into one step, we aim to minimize resource utilization and enable fast surrogate models suitable for application both inside and outside large collaborations. We demonstrate this approach using a publicly available dataset of jets passed through the full simulation and reconstruction pipeline of the CMS experiment. We show that Parnassus accurately mimics the CMS particle flow algorithm on the (statistically) same events it was trained on and can generalize to jet momentum and type outside of the training distribution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parnassus:准确、精确、快速探测器模拟和重建的自动化方法
探测器模拟和重建是粒子物理学中一个重要的计算瓶颈。我们开发了粒子流神经辅助模拟(Parnassus)来应对这一挑战。我们的深度学习模型将点云(撞击探测器的粒子)作为输入,并生成点云(重构粒子)。通过将探测器模拟和重建合并为一个步骤,我们的目标是最大限度地降低资源利用率,并建立适合大型合作组织内外应用的快速代用模型。我们使用通过 CMS 实验的完整模拟和重建流水线的公开喷流数据集演示了这种方法。我们证明,Parnassus 在(统计学上)相同的事件上准确地模仿了 CMS 粒子流算法,并且可以泛化到训练分布之外的喷流动量和类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1