首页 > 最新文献

arXiv - PHYS - Data Analysis, Statistics and Probability最新文献

英文 中文
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence PASS:面向下一代智能的异步概率处理器
Pub Date : 2024-09-16 DOI: arxiv-2409.10325
Saavan Patel, Philip Canoza, Adhiraj Datar, Steven Lu, Chirag Garg, Sayeef Salahuddin
New computing paradigms are required to solve the most challengingcomputational problems where no exact polynomial time solutionexists.Probabilistic Ising Accelerators has gained promise on these problemswith the ability to model complex probability distributions and find groundstates of intractable problems. In this context, we have demonstrated theParallel Asynchronous Stochastic Sampler (PASS), the first fully on-chipintegrated, asynchronous, probabilistic accelerator that takes advantage of theintrinsic fine-grained parallelism of the Ising Model and built in state of theart 14nm CMOS FinFET technology. We have demonstrated broad applicability ofthis accelerator on problems ranging from Combinatorial Optimization, NeuralSimulation, to Machine Learning along with up to $23,000$x energy to solutionimprovement compared to CPUs on probabilistic problems.
要解决没有精确多项式时间解决方案的最具挑战性的计算问题,就必须采用新的计算范式。概率伊辛加速器能够模拟复杂的概率分布并找到棘手问题的基态,因此在这些问题上大有可为。在此背景下,我们展示了并行异步随机取样器 (PASS),这是首个完全集成在芯片上的异步概率加速器,它利用了伊辛模型内在的细粒度并行性,并采用最先进的 14nm CMOS FinFET 技术。我们已经证明了该加速器在组合优化、神经仿真和机器学习等问题上的广泛适用性,与 CPU 相比,在概率问题上的能效提高了 23,000 美元。
{"title":"PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence","authors":"Saavan Patel, Philip Canoza, Adhiraj Datar, Steven Lu, Chirag Garg, Sayeef Salahuddin","doi":"arxiv-2409.10325","DOIUrl":"https://doi.org/arxiv-2409.10325","url":null,"abstract":"New computing paradigms are required to solve the most challenging\u0000computational problems where no exact polynomial time solution\u0000exists.Probabilistic Ising Accelerators has gained promise on these problems\u0000with the ability to model complex probability distributions and find ground\u0000states of intractable problems. In this context, we have demonstrated the\u0000Parallel Asynchronous Stochastic Sampler (PASS), the first fully on-chip\u0000integrated, asynchronous, probabilistic accelerator that takes advantage of the\u0000intrinsic fine-grained parallelism of the Ising Model and built in state of the\u0000art 14nm CMOS FinFET technology. We have demonstrated broad applicability of\u0000this accelerator on problems ranging from Combinatorial Optimization, Neural\u0000Simulation, to Machine Learning along with up to $23,000$x energy to solution\u0000improvement compared to CPUs on probabilistic problems.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astrometric Binary Classification Via Artificial Neural Networks 通过人工神经网络进行天文二进制分类
Pub Date : 2024-09-15 DOI: arxiv-2409.09563
Joe Smith
With nearly two billion stars observed and their corresponding astrometricparameters evaluated in the recent Gaia mission, the number of astrometricbinary candidates have risen significantly. Due to the surplus of astrometricdata, the current computational methods employed to inspect these astrometricbinary candidates are both computationally expensive and cannot be executed ina reasonable time frame. In light of this, a machine learning (ML) technique toautomatically classify whether a set of stars belong to an astrometric binarypair via an artificial neural network (ANN) is proposed. Using data from GaiaDR3, the ANN was trained and tested on 1.5 million highly probable true andvisual binaries, considering the proper motions, parallaxes, and angular andphysical separations as features. The ANN achieves high classification scores,with an accuracy of 99.3%, a precision rate of 0.988, a recall rate of 0.991,and an AUC of 0.999, indicating that the utilized ML technique is a highlyeffective method for classifying astrometric binaries. Thus, the proposed ANNis a promising alternative to the existing methods for the classification ofastrometric binaries.
最近的盖亚(Gaia)任务观测了近20亿颗恒星,并对其相应的天体测量参数进行了评估,因此天体测量双星候选体的数量大幅上升。由于天体测量数据过剩,目前用于检测这些天体测量双星候选体的计算方法不仅计算成本高昂,而且无法在合理的时间范围内执行。有鉴于此,我们提出了一种机器学习(ML)技术,通过人工神经网络(ANN)对一组恒星是否属于天体测量双星对进行自动分类。利用来自GaiaDR3的数据,对150万个高概率真双星和视双星进行了人工神经网络训练和测试,并将正交运动、视差、角度和物理分隔作为特征。ANN的分类得分很高,准确率为99.3%,精确率为0.988,召回率为0.991,AUC为0.999,表明所利用的ML技术是一种高效的天体测量双星分类方法。因此,在天体测量双星的分类中,所提出的人工神经网络是现有方法的一种很有前途的替代方法。
{"title":"Astrometric Binary Classification Via Artificial Neural Networks","authors":"Joe Smith","doi":"arxiv-2409.09563","DOIUrl":"https://doi.org/arxiv-2409.09563","url":null,"abstract":"With nearly two billion stars observed and their corresponding astrometric\u0000parameters evaluated in the recent Gaia mission, the number of astrometric\u0000binary candidates have risen significantly. Due to the surplus of astrometric\u0000data, the current computational methods employed to inspect these astrometric\u0000binary candidates are both computationally expensive and cannot be executed in\u0000a reasonable time frame. In light of this, a machine learning (ML) technique to\u0000automatically classify whether a set of stars belong to an astrometric binary\u0000pair via an artificial neural network (ANN) is proposed. Using data from Gaia\u0000DR3, the ANN was trained and tested on 1.5 million highly probable true and\u0000visual binaries, considering the proper motions, parallaxes, and angular and\u0000physical separations as features. The ANN achieves high classification scores,\u0000with an accuracy of 99.3%, a precision rate of 0.988, a recall rate of 0.991,\u0000and an AUC of 0.999, indicating that the utilized ML technique is a highly\u0000effective method for classifying astrometric binaries. Thus, the proposed ANN\u0000is a promising alternative to the existing methods for the classification of\u0000astrometric binaries.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"66 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection XENONnT 分析:信号重构、校准和事件选择
Pub Date : 2024-09-13 DOI: arxiv-2409.08778
XENON Collaboration, E. Aprile, J. Aalbers, K. Abe, S. Ahmed Maouloud, L. Althueser, B. Andrieu, E. Angelino, J. R. Angevaare, D. Antón Martin, F. Arneodo, L. Baudis, M. Bazyk, L. Bellagamba, R. Biondi, A. Bismark, K. Boese, A. Brown, G. Bruno, R. Budnik, J. M. R. Cardoso, A. P. Cimental Chávez, A. P. Colijn, J. Conrad, J. J. Cuenca-García, V. D'Andrea, L. C. Daniel Garcia, M. P. Decowski, A. Deisting, C. Di Donato, P. Di Gangi, S. Diglio, K. Eitel, A. Elykov, A. D. Ferella, C. Ferrari, H. Fischer, T. Flehmke, M. Flierman, W. Fulgione, C. Fuselli, P. Gaemers, R. Gaior, M. Galloway, F. Gao, S. Ghosh, R. Giacomobono, R. Glade-Beucke, L. Grandi, J. Grigat, H. Guan, M. Guida, P. Gyoergy, R. Hammann, A. Higuera, C. Hils, L. Hoetzsch, N. F. Hood, M. Iacovacci, Y. Itow, J. Jakob, F. Joerg, Y. Kaminaga, M. Kara, P. Kavrigin, S. Kazama, M. Kobayashi, D. Koke, A. Kopec, F. Kuger, H. Landsman, R. F. Lang, L. Levinson, I. Li, S. Li, S. Liang, Y. -T. Lin, S. Lindemann, M. Lindner, K. Liu, J. Loizeau, F. Lombardi, J. Long, J. A. M. Lopes, T. Luce, Y. Ma, C. Macolino, J. Mahlstedt, A. Mancuso, L. Manenti, F. Marignetti, T. Marrodán Undagoitia, K. Martens, J. Masbou, E. Masson, S. Mastroianni, A. Melchiorre, J. Merz, M. Messina, A. Michael, K. Miuchi, A. Molinario, S. Moriyama, K. Morå, Y. Mosbacher, M. Murra, J. Müller, K. Ni, U. Oberlack, B. Paetsch, Y. Pan, Q. Pellegrini, R. Peres, C. Peters, J. Pienaar, M. Pierre, G. Plante, T. R. Pollmann, L. Principe, J. Qi, J. Qin, D. Ramírez García, M. Rajado, R. Singh, L. Sanchez, J. M. F. dos Santos, I. Sarnoff, G. Sartorelli, J. Schreiner, D. Schulte, P. Schulte, H. Schulze Eißing, M. Schumann, L. Scotto Lavina, M. Selvi, F. Semeria, P. Shagin, S. Shi, J. Shi, M. Silva, H. Simgen, A. Takeda, P. -L. Tan, A. Terliuk, D. Thers, F. Toschi, G. Trinchero, C. D. Tunnell, F. Tönnies, K. Valerius, S. Vecchi, S. Vetter, F. I. Villazon Solar, G. Volta, C. Weinheimer, M. Weiss, D. Wenz, C. Wittweg, V. H. S. Wu, Y. Xing, D. Xu, Z. Xu, M. Yamashita, L. Yang, J. Ye, L. Yuan, G. Zavattini, M. Zhong
The XENONnT experiment, located at the INFN Laboratori Nazionali del GranSasso, Italy, features a 5.9 tonne liquid xenon time projection chambersurrounded by an instrumented neutron veto, all of which is housed within amuon veto water tank. Due to extensive shielding and advanced purification tomitigate natural radioactivity, an exceptionally low background level of (15.8$pm$ 1.3) events/(tonne$cdot$year$cdot$keV) in the (1, 30) keV region isreached in the inner part of the TPC. XENONnT is thus sensitive to a wide rangeof rare phenomena related to Dark Matter and Neutrino interactions, both withinand beyond the Standard Model of particle physics, with a focus on the directdetection of Dark Matter in the form of weakly interacting massive particles(WIMPs). From May 2021 to December 2021, XENONnT accumulated data in rare-eventsearch mode with a total exposure of one tonne $cdot$ year. This paperprovides a detailed description of the signal reconstruction methods, eventselection procedure, and detector response calibration, as well as an overviewof the detector performance in this time frame. This work establishes thefoundational framework for the `blind analysis' methodology we are using whenreporting XENONnT physics results.
XENONnT 实验位于意大利大萨索国家实验室(INFN Laboratori Nazionali del GranSasso),设有一个 5.9 吨重的液态氙时间投影室,周围环绕着一个仪器式中子否决装置,所有这些装置都安装在氙否决水箱中。由于采用了广泛的屏蔽和先进的净化技术来消除天然放射性,在 TPC 内部,(1, 30) keV 区域的本底水平非常低,仅为 (15.8$pm$ 1.3) 次/(吨/年) 。因此,XENONnT 对粒子物理标准模型内外与暗物质和中微子相互作用有关的各种罕见现象都很敏感,重点是以弱相互作用大质量粒子(WIMPs)的形式直接探测暗物质。从2021年5月到2021年12月,XENONnT在稀有搜索模式下积累数据,总曝光量为每年一吨。本文详细描述了信号重建方法、事件选择程序和探测器响应校准,并概述了这一时期的探测器性能。这项工作为我们在报告 XENONnT 物理结果时使用的 "盲分析 "方法建立了基础框架。
{"title":"XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection","authors":"XENON Collaboration, E. Aprile, J. Aalbers, K. Abe, S. Ahmed Maouloud, L. Althueser, B. Andrieu, E. Angelino, J. R. Angevaare, D. Antón Martin, F. Arneodo, L. Baudis, M. Bazyk, L. Bellagamba, R. Biondi, A. Bismark, K. Boese, A. Brown, G. Bruno, R. Budnik, J. M. R. Cardoso, A. P. Cimental Chávez, A. P. Colijn, J. Conrad, J. J. Cuenca-García, V. D'Andrea, L. C. Daniel Garcia, M. P. Decowski, A. Deisting, C. Di Donato, P. Di Gangi, S. Diglio, K. Eitel, A. Elykov, A. D. Ferella, C. Ferrari, H. Fischer, T. Flehmke, M. Flierman, W. Fulgione, C. Fuselli, P. Gaemers, R. Gaior, M. Galloway, F. Gao, S. Ghosh, R. Giacomobono, R. Glade-Beucke, L. Grandi, J. Grigat, H. Guan, M. Guida, P. Gyoergy, R. Hammann, A. Higuera, C. Hils, L. Hoetzsch, N. F. Hood, M. Iacovacci, Y. Itow, J. Jakob, F. Joerg, Y. Kaminaga, M. Kara, P. Kavrigin, S. Kazama, M. Kobayashi, D. Koke, A. Kopec, F. Kuger, H. Landsman, R. F. Lang, L. Levinson, I. Li, S. Li, S. Liang, Y. -T. Lin, S. Lindemann, M. Lindner, K. Liu, J. Loizeau, F. Lombardi, J. Long, J. A. M. Lopes, T. Luce, Y. Ma, C. Macolino, J. Mahlstedt, A. Mancuso, L. Manenti, F. Marignetti, T. Marrodán Undagoitia, K. Martens, J. Masbou, E. Masson, S. Mastroianni, A. Melchiorre, J. Merz, M. Messina, A. Michael, K. Miuchi, A. Molinario, S. Moriyama, K. Morå, Y. Mosbacher, M. Murra, J. Müller, K. Ni, U. Oberlack, B. Paetsch, Y. Pan, Q. Pellegrini, R. Peres, C. Peters, J. Pienaar, M. Pierre, G. Plante, T. R. Pollmann, L. Principe, J. Qi, J. Qin, D. Ramírez García, M. Rajado, R. Singh, L. Sanchez, J. M. F. dos Santos, I. Sarnoff, G. Sartorelli, J. Schreiner, D. Schulte, P. Schulte, H. Schulze Eißing, M. Schumann, L. Scotto Lavina, M. Selvi, F. Semeria, P. Shagin, S. Shi, J. Shi, M. Silva, H. Simgen, A. Takeda, P. -L. Tan, A. Terliuk, D. Thers, F. Toschi, G. Trinchero, C. D. Tunnell, F. Tönnies, K. Valerius, S. Vecchi, S. Vetter, F. I. Villazon Solar, G. Volta, C. Weinheimer, M. Weiss, D. Wenz, C. Wittweg, V. H. S. Wu, Y. Xing, D. Xu, Z. Xu, M. Yamashita, L. Yang, J. Ye, L. Yuan, G. Zavattini, M. Zhong","doi":"arxiv-2409.08778","DOIUrl":"https://doi.org/arxiv-2409.08778","url":null,"abstract":"The XENONnT experiment, located at the INFN Laboratori Nazionali del Gran\u0000Sasso, Italy, features a 5.9 tonne liquid xenon time projection chamber\u0000surrounded by an instrumented neutron veto, all of which is housed within a\u0000muon veto water tank. Due to extensive shielding and advanced purification to\u0000mitigate natural radioactivity, an exceptionally low background level of (15.8\u0000$pm$ 1.3) events/(tonne$cdot$year$cdot$keV) in the (1, 30) keV region is\u0000reached in the inner part of the TPC. XENONnT is thus sensitive to a wide range\u0000of rare phenomena related to Dark Matter and Neutrino interactions, both within\u0000and beyond the Standard Model of particle physics, with a focus on the direct\u0000detection of Dark Matter in the form of weakly interacting massive particles\u0000(WIMPs). From May 2021 to December 2021, XENONnT accumulated data in rare-event\u0000search mode with a total exposure of one tonne $cdot$ year. This paper\u0000provides a detailed description of the signal reconstruction methods, event\u0000selection procedure, and detector response calibration, as well as an overview\u0000of the detector performance in this time frame. This work establishes the\u0000foundational framework for the `blind analysis' methodology we are using when\u0000reporting XENONnT physics results.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Converting sWeights to Probabilities with Density Ratios 用密度比将 sWeights 转换为概率
Pub Date : 2024-09-12 DOI: arxiv-2409.08183
D. I. Glazier, R. Tyson
The use of machine learning approaches continues to have many benefits inexperimental nuclear and particle physics. One common issue is generatingtraining data which is sufficiently realistic to give reliable results. Here weadvocate using real experimental data as the source of training data anddemonstrate how one might subtract background contributions through the use ofprobabilistic weights which can be readily applied to training data. The sPlotformalism is a common tool used to isolate distributions from differentsources. However, negative sWeights produced by the sPlot technique can lead toissues in training and poor predictive power. This article demonstrates howdensity ratio estimation can be applied to convert sWeights to eventprobabilities, which we call drWeights. The drWeights can then be applied toproduce the distributions of interest and are consistent with direct use of thesWeights. This article will also show how decision trees are particular wellsuited to converting sWeights, with the benefit of fast prediction rates andadaptability to aspects of the experimental data such as data sample size andproportions of different event sources. We also show that a double densityratio approach where the initial drWeights are reweighted by an additionalclassifier gives substantially better results.
在核物理和粒子物理实验中,使用机器学习方法仍然有很多好处。一个共同的问题是如何生成足够真实的训练数据,从而得出可靠的结果。在这里,我们提倡使用真实的实验数据作为训练数据源,并演示了如何通过使用可随时应用于训练数据的概率权重来减去背景贡献。sPlotformalism 是一种常用的工具,用于分离不同来源的分布。然而,sPlot 技术产生的负 sWeights 会导致训练问题和预测能力低下。本文展示了如何应用密度比估计将 sWeights 转换为事件概率,我们称之为 drWeights。然后,drWeights 可以用于生成感兴趣的分布,并与直接使用 sWeights 保持一致。本文还将展示决策树如何特别适合转换 sWeights,其优点是预测速度快,并能适应实验数据的各个方面,如数据样本大小和不同事件源的比例。我们还展示了双密度比方法,即通过额外的分类器对初始 DRWeights 进行重新加权,从而获得更好的结果。
{"title":"Converting sWeights to Probabilities with Density Ratios","authors":"D. I. Glazier, R. Tyson","doi":"arxiv-2409.08183","DOIUrl":"https://doi.org/arxiv-2409.08183","url":null,"abstract":"The use of machine learning approaches continues to have many benefits in\u0000experimental nuclear and particle physics. One common issue is generating\u0000training data which is sufficiently realistic to give reliable results. Here we\u0000advocate using real experimental data as the source of training data and\u0000demonstrate how one might subtract background contributions through the use of\u0000probabilistic weights which can be readily applied to training data. The sPlot\u0000formalism is a common tool used to isolate distributions from different\u0000sources. However, negative sWeights produced by the sPlot technique can lead to\u0000issues in training and poor predictive power. This article demonstrates how\u0000density ratio estimation can be applied to convert sWeights to event\u0000probabilities, which we call drWeights. The drWeights can then be applied to\u0000produce the distributions of interest and are consistent with direct use of the\u0000sWeights. This article will also show how decision trees are particular well\u0000suited to converting sWeights, with the benefit of fast prediction rates and\u0000adaptability to aspects of the experimental data such as data sample size and\u0000proportions of different event sources. We also show that a double density\u0000ratio approach where the initial drWeights are reweighted by an additional\u0000classifier gives substantially better results.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Challenges and perspectives in recurrence analyses of event time series 事件时间序列递推分析的挑战与展望
Pub Date : 2024-09-12 DOI: arxiv-2409.08398
Norbert Marwan
The analysis of event time series is in general challenging. Most time seriesanalysis tools are limited for the analysis of this kind of data. Recurrenceanalysis, a powerful concept from nonlinear time series analysis, providesseveral opportunities to work with event data and even for the most challengingtask of comparing event time series with continuous time series. Here, thebasic concept is introduced, the challenges are discussed, and the futureperspectives are summarised.
对事件时间序列进行分析一般都具有挑战性。大多数时间序列分析工具在分析这类数据时都受到限制。递归分析是非线性时间序列分析中的一个强大概念,它为处理事件数据,甚至是将事件时间序列与连续时间序列进行比较这一最具挑战性的任务提供了许多机会。在此,我们将介绍这一基本概念,讨论面临的挑战,并总结未来的展望。
{"title":"Challenges and perspectives in recurrence analyses of event time series","authors":"Norbert Marwan","doi":"arxiv-2409.08398","DOIUrl":"https://doi.org/arxiv-2409.08398","url":null,"abstract":"The analysis of event time series is in general challenging. Most time series\u0000analysis tools are limited for the analysis of this kind of data. Recurrence\u0000analysis, a powerful concept from nonlinear time series analysis, provides\u0000several opportunities to work with event data and even for the most challenging\u0000task of comparing event time series with continuous time series. Here, the\u0000basic concept is introduced, the challenges are discussed, and the future\u0000perspectives are summarised.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SeeBand: A highly efficient, interactive tool for analyzing electronic transport data SeeBand:分析电子运输数据的高效互动工具
Pub Date : 2024-09-10 DOI: arxiv-2409.06261
Michael Parzer, Alexander Riss, Fabian Garmroudi, Johannes de Boor, Takao Mori, Ernst Bauer
Linking the fundamental physics of band structure and scattering theory withmacroscopic features such as measurable bulk thermoelectric transportproperties is indispensable to a thorough understanding of transport phenomenaand ensures more targeted and efficient experimental research. Here, weintroduce SeeBand, a highly efficient and interactive fitting tool based onBoltzmann transport theory. A fully integrated user interface and visualizationtool enable real-time comparison and connection between the electronic bandstructure (EBS) and microscopic transport properties. It allows simultaneousanalysis of data for the Seebeck coefficient $S$, resistivity $rho$ and Hallcoefficient $R_text{H}$ to identify suitable EBS models and extract theunderlying microscopic material parameters and additional information from themodel. Crucially, the EBS can be obtained by directly fitting thetemperature-dependent properties of a single sample, which goes beyond previousapproaches that look into doping dependencies. Finally, the combination ofneural-network-assisted initial guesses and an efficient subsequent fittingroutine allows for a rapid processing of big datasets, facilitatinghigh-throughput analyses to identify underlying, yet undiscovered dependencies,thereby guiding material design.
将带状结构和散射理论的基础物理学与可测量的体热电传输特性等宏观特征联系起来,对于透彻理解传输现象是不可或缺的,并能确保开展更有针对性和更高效的实验研究。在此,我们介绍基于玻尔兹曼输运理论的高效互动拟合工具 SeeBand。通过完全集成的用户界面和可视化工具,可以实时比较和连接电子能带结构(EBS)和微观输运特性。它允许同时分析塞贝克系数 $S$、电阻率 $rho$ 和霍尔系数 $R_text{H}$ 的数据,以确定合适的 EBS 模型,并从模型中提取基本的微观材料参数和附加信息。最重要的是,EBS 可以通过直接拟合单个样品随温度变化的特性来获得,这超越了以前研究掺杂相关性的方法。最后,神经网络辅助初始猜测与高效的后续拟合程序相结合,可以快速处理大型数据集,便于进行高通量分析,找出尚未发现的潜在依赖关系,从而指导材料设计。
{"title":"SeeBand: A highly efficient, interactive tool for analyzing electronic transport data","authors":"Michael Parzer, Alexander Riss, Fabian Garmroudi, Johannes de Boor, Takao Mori, Ernst Bauer","doi":"arxiv-2409.06261","DOIUrl":"https://doi.org/arxiv-2409.06261","url":null,"abstract":"Linking the fundamental physics of band structure and scattering theory with\u0000macroscopic features such as measurable bulk thermoelectric transport\u0000properties is indispensable to a thorough understanding of transport phenomena\u0000and ensures more targeted and efficient experimental research. Here, we\u0000introduce SeeBand, a highly efficient and interactive fitting tool based on\u0000Boltzmann transport theory. A fully integrated user interface and visualization\u0000tool enable real-time comparison and connection between the electronic band\u0000structure (EBS) and microscopic transport properties. It allows simultaneous\u0000analysis of data for the Seebeck coefficient $S$, resistivity $rho$ and Hall\u0000coefficient $R_text{H}$ to identify suitable EBS models and extract the\u0000underlying microscopic material parameters and additional information from the\u0000model. Crucially, the EBS can be obtained by directly fitting the\u0000temperature-dependent properties of a single sample, which goes beyond previous\u0000approaches that look into doping dependencies. Finally, the combination of\u0000neural-network-assisted initial guesses and an efficient subsequent fitting\u0000routine allows for a rapid processing of big datasets, facilitating\u0000high-throughput analyses to identify underlying, yet undiscovered dependencies,\u0000thereby guiding material design.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-label Classification of Parameter Constraints in BSM Extensions using Deep Learning 利用深度学习对 BSM 扩展中的参数约束进行多标签分类
Pub Date : 2024-09-09 DOI: arxiv-2409.05453
Maien Binjonaid
The shortcomings of the Standard Model (SM) motivate its extension toaccommodate new expected phenomena, such as dark matter and neutrino masses.However, such extensions are generally more complex due to the presence of alarger number of free parameters as well as additional phenomenology.Understanding how current theoretical and experimental constraints,individually and collectively, affect the parameter spaces of new models is ofutmost importance in achieving testable predictions and targeted model-buildingthat aims to solve certain issues. We present a comprehensive approach of usingDeep Learning (DL) for the multi-label classification (MLC) of theoretical andexperimental limits on the two-Higgs doublet model augmented by a real singlet(N2HDM), as a representative case. This approach can be generalized to anyextension beyond the SM.
标准模型(SM)的缺陷促使其扩展以适应新的预期现象,如暗物质和中微子质量。然而,由于存在更多的自由参数以及额外的现象学,这种扩展通常更为复杂。了解当前的理论和实验约束如何单独或集体地影响新模型的参数空间,对于实现可检验的预测和旨在解决某些问题的有针对性的模型构建至关重要。我们提出了一种综合方法,即使用深度学习(Deep Learning,DL)对以实单子增强的双希格斯双子模型(N2HDM)为代表的理论和实验限制进行多标签分类(MLC)。这种方法可以推广到 SM 以外的任何扩展。
{"title":"Multi-label Classification of Parameter Constraints in BSM Extensions using Deep Learning","authors":"Maien Binjonaid","doi":"arxiv-2409.05453","DOIUrl":"https://doi.org/arxiv-2409.05453","url":null,"abstract":"The shortcomings of the Standard Model (SM) motivate its extension to\u0000accommodate new expected phenomena, such as dark matter and neutrino masses.\u0000However, such extensions are generally more complex due to the presence of a\u0000larger number of free parameters as well as additional phenomenology.\u0000Understanding how current theoretical and experimental constraints,\u0000individually and collectively, affect the parameter spaces of new models is of\u0000utmost importance in achieving testable predictions and targeted model-building\u0000that aims to solve certain issues. We present a comprehensive approach of using\u0000Deep Learning (DL) for the multi-label classification (MLC) of theoretical and\u0000experimental limits on the two-Higgs doublet model augmented by a real singlet\u0000(N2HDM), as a representative case. This approach can be generalized to any\u0000extension beyond the SM.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of data embedding in quantum autoencoders for improved anomaly detection 量子自动编码器中的数据嵌入对改进异常检测的作用
Pub Date : 2024-09-06 DOI: arxiv-2409.04519
Jack Y. Araz, Michael Spannowsky
The performance of Quantum Autoencoders (QAEs) in anomaly detection tasks iscritically dependent on the choice of data embedding and ansatz design. Thisstudy explores the effects of three data embedding techniques, datare-uploading, parallel embedding, and alternate embedding, on therepresentability and effectiveness of QAEs in detecting anomalies. Our findingsreveal that even with relatively simple variational circuits, enhanced dataembedding strategies can substantially improve anomaly detection accuracy andthe representability of underlying data across different datasets. Startingwith toy examples featuring low-dimensional data, we visually demonstrate theeffect of different embedding techniques on the representability of the model.We then extend our analysis to complex, higher-dimensional datasets,highlighting the significant impact of embedding methods on QAE performance.
量子自动编码器(QAE)在异常检测任务中的性能关键取决于数据嵌入和ansatz设计的选择。本研究探讨了三种数据嵌入技术(数据上载、并行嵌入和交替嵌入)对量子自动编码器检测异常的可呈现性和有效性的影响。我们的研究结果表明,即使使用相对简单的变分电路,增强型数据嵌入策略也能大幅提高异常检测的准确性,以及不同数据集基础数据的可表示性。从低维数据的玩具示例开始,我们直观地展示了不同嵌入技术对模型可表示性的影响,然后我们将分析扩展到复杂的高维数据集,强调了嵌入方法对 QAE 性能的重大影响。
{"title":"The role of data embedding in quantum autoencoders for improved anomaly detection","authors":"Jack Y. Araz, Michael Spannowsky","doi":"arxiv-2409.04519","DOIUrl":"https://doi.org/arxiv-2409.04519","url":null,"abstract":"The performance of Quantum Autoencoders (QAEs) in anomaly detection tasks is\u0000critically dependent on the choice of data embedding and ansatz design. This\u0000study explores the effects of three data embedding techniques, data\u0000re-uploading, parallel embedding, and alternate embedding, on the\u0000representability and effectiveness of QAEs in detecting anomalies. Our findings\u0000reveal that even with relatively simple variational circuits, enhanced data\u0000embedding strategies can substantially improve anomaly detection accuracy and\u0000the representability of underlying data across different datasets. Starting\u0000with toy examples featuring low-dimensional data, we visually demonstrate the\u0000effect of different embedding techniques on the representability of the model.\u0000We then extend our analysis to complex, higher-dimensional datasets,\u0000highlighting the significant impact of embedding methods on QAE performance.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trends in recurrence analysis of dynamical systems 动力系统递推分析的趋势
Pub Date : 2024-09-06 DOI: arxiv-2409.04110
Norbert Marwan, K. Hauke Kraemer
The last decade has witnessed a number of important and exciting developmentsthat had been achieved for improving recurrence plot based data analysis and towiden its application potential. We will give a brief overview about importantand innovative developments, such as computational improvements, alternativerecurrence definitions (event-like, multiscale, heterogeneous, andspatio-temporal recurrences) and ideas for parameter selection, theoreticalconsiderations of recurrence quantification measures, new recurrencequantifiers (e.g., for transition detection and causality detection), andcorrection schemes. New perspectives have recently been opened by combiningrecurrence plots with machine learning. We finally show open questions andperspectives for futures directions of methodical research.
近十年来,基于递推图的数据分析取得了一系列重要而令人振奋的发展,并进一步挖掘了其应用潜力。我们将简要介绍一些重要的创新发展,如计算方法的改进、替代性递归定义(类事件、多尺度、异质和时空递归)和参数选择的思路、递归量化措施的理论考虑、新的递归量化指标(如用于过渡检测和因果关系检测)以及校正方案。最近,通过将递归图与机器学习相结合,我们看到了新的前景。最后,我们提出了一些开放性问题,并展望了未来的方法论研究方向。
{"title":"Trends in recurrence analysis of dynamical systems","authors":"Norbert Marwan, K. Hauke Kraemer","doi":"arxiv-2409.04110","DOIUrl":"https://doi.org/arxiv-2409.04110","url":null,"abstract":"The last decade has witnessed a number of important and exciting developments\u0000that had been achieved for improving recurrence plot based data analysis and to\u0000widen its application potential. We will give a brief overview about important\u0000and innovative developments, such as computational improvements, alternative\u0000recurrence definitions (event-like, multiscale, heterogeneous, and\u0000spatio-temporal recurrences) and ideas for parameter selection, theoretical\u0000considerations of recurrence quantification measures, new recurrence\u0000quantifiers (e.g., for transition detection and causality detection), and\u0000correction schemes. New perspectives have recently been opened by combining\u0000recurrence plots with machine learning. We finally show open questions and\u0000perspectives for futures directions of methodical research.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gaussian Process Phase Interpolation for estimating the asymptotic phase of a limit cycle oscillator from time series data 从时间序列数据中估计极限周期振荡器渐近相位的高斯过程相位内插法
Pub Date : 2024-09-05 DOI: arxiv-2409.03290
Taichi YamamotoThe University of Tokyo, Hiroya NakaoTokyo Institute of Technology, Ryota KobayashiThe University of Tokyo
Rhythmic activity commonly observed in biological systems, occurring from thecellular level to the organismic level, is typically modeled as limit cycleoscillators. The phase reduction theory serves as a useful analytical frameworkfor elucidating the synchronization mechanism of these oscillators.Essentially, this theory describes the dynamics of a multi-dimensionalnonlinear oscillator using a single variable phase model. In order tounderstand and control the rhythmic phenomena in the real world, it is crucialto estimate the asymptotic phase from the observed data. In this study, wepropose a new method, Gaussian Process Phase Interpolation (GPPI), forestimating the asymptotic phase from time series data. The GPPI method firstevaluates the asymptotic phase on the limit cycle and subsequently estimatesthe asymptotic phase outside the limit cycle employing Gaussian processregression. Thanks to the high expressive power of Gaussian processes, the GPPIis capable of capturing a variety of functions. Notably, the GPPI is easilyapplicable even when the dimension of the system increases. The performance ofthe GPPI is tested by using simulation data from the Stuart-Landau oscillatorand the Hodgkin-Huxley oscillator. The results demonstrate that the GPPI canaccurately estimate the asymptotic phase even in the presence of highobservation noise and strong nonlinearity. Additionally, the GPPI isdemonstrated as an effective tool for data-driven phase control of aHodgkin-Huxley oscillator. Thus, the proposed GPPI will facilitate thedata-driven modeling of the limit cycle oscillators.
从细胞水平到有机体水平,生物系统中常见的节律活动通常被模拟为极限周期振荡器。从本质上讲,该理论使用单变量相位模型描述了多维非线性振荡器的动态。为了理解和控制现实世界中的节律现象,从观测数据中估计渐近相位至关重要。在本研究中,我们提出了一种从时间序列数据中估计渐近相位的新方法--高斯过程相位插值法(GPPI)。GPPI 方法首先评估极限周期上的渐近相位,然后利用高斯过程回归估计极限周期外的渐近相位。得益于高斯过程的高表达能力,GPPI 能够捕捉各种函数。值得注意的是,即使系统维度增加,GPPI 也很容易应用。我们使用斯图尔特-朗道振荡器和霍奇金-赫胥黎振荡器的模拟数据对 GPPI 的性能进行了测试。结果表明,即使存在高观测噪声和强非线性,GPPI 也能准确估计渐近相位。此外,GPPI 被证明是对霍奇金-赫胥黎振荡器进行数据驱动相位控制的有效工具。因此,所提出的 GPPI 将有助于极限周期振荡器的数据驱动建模。
{"title":"Gaussian Process Phase Interpolation for estimating the asymptotic phase of a limit cycle oscillator from time series data","authors":"Taichi YamamotoThe University of Tokyo, Hiroya NakaoTokyo Institute of Technology, Ryota KobayashiThe University of Tokyo","doi":"arxiv-2409.03290","DOIUrl":"https://doi.org/arxiv-2409.03290","url":null,"abstract":"Rhythmic activity commonly observed in biological systems, occurring from the\u0000cellular level to the organismic level, is typically modeled as limit cycle\u0000oscillators. The phase reduction theory serves as a useful analytical framework\u0000for elucidating the synchronization mechanism of these oscillators.\u0000Essentially, this theory describes the dynamics of a multi-dimensional\u0000nonlinear oscillator using a single variable phase model. In order to\u0000understand and control the rhythmic phenomena in the real world, it is crucial\u0000to estimate the asymptotic phase from the observed data. In this study, we\u0000propose a new method, Gaussian Process Phase Interpolation (GPPI), for\u0000estimating the asymptotic phase from time series data. The GPPI method first\u0000evaluates the asymptotic phase on the limit cycle and subsequently estimates\u0000the asymptotic phase outside the limit cycle employing Gaussian process\u0000regression. Thanks to the high expressive power of Gaussian processes, the GPPI\u0000is capable of capturing a variety of functions. Notably, the GPPI is easily\u0000applicable even when the dimension of the system increases. The performance of\u0000the GPPI is tested by using simulation data from the Stuart-Landau oscillator\u0000and the Hodgkin-Huxley oscillator. The results demonstrate that the GPPI can\u0000accurately estimate the asymptotic phase even in the presence of high\u0000observation noise and strong nonlinearity. Additionally, the GPPI is\u0000demonstrated as an effective tool for data-driven phase control of a\u0000Hodgkin-Huxley oscillator. Thus, the proposed GPPI will facilitate the\u0000data-driven modeling of the limit cycle oscillators.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
arXiv - PHYS - Data Analysis, Statistics and Probability
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1