{"title":"Multi-ship collision avoidance decision-making method under complex encounter situations","authors":"Bo Xiang, Baofeng Pan, Guibing Zhu","doi":"10.1007/s00773-024-01009-z","DOIUrl":null,"url":null,"abstract":"<p>This work addresses the issue of multi-ship collision avoidance decision-making complex encounter situations, and proposes a novel velocity varying-steering collision avoidance method based on an improved particle swarm optimization (IPSO) algorithm. The proposed method establishes a limited range based on the International Regulations for Preventing Collisions at Sea (COLREGs) and creates a multi-objective model, in which the collision risk of ships, the energy loss caused by velocity varying and the voyage loss caused by steering are taken into account. To obtain an optimal solution of the multi-objective model, an IPSO is introduced to determine the feasible solution domain for ship collision avoidance decision making(CADM). The proposed CADM is validated by numerical simulations and navigation simulator. The results indicate that the recommended velocity and course can effectively remove the risk of collision between the ship and target ships.</p>","PeriodicalId":16334,"journal":{"name":"Journal of Marine Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00773-024-01009-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This work addresses the issue of multi-ship collision avoidance decision-making complex encounter situations, and proposes a novel velocity varying-steering collision avoidance method based on an improved particle swarm optimization (IPSO) algorithm. The proposed method establishes a limited range based on the International Regulations for Preventing Collisions at Sea (COLREGs) and creates a multi-objective model, in which the collision risk of ships, the energy loss caused by velocity varying and the voyage loss caused by steering are taken into account. To obtain an optimal solution of the multi-objective model, an IPSO is introduced to determine the feasible solution domain for ship collision avoidance decision making(CADM). The proposed CADM is validated by numerical simulations and navigation simulator. The results indicate that the recommended velocity and course can effectively remove the risk of collision between the ship and target ships.
本研究针对复杂相遇情况下多船避撞决策问题,提出了一种基于改进粒子群优化(IPSO)算法的新型变速转向避撞方法。该方法以《国际海上避碰规则》(COLREGs)为基础,建立了一个多目标模型,其中考虑了船舶碰撞风险、速度变化造成的能量损失和转向造成的航程损失。为了获得多目标模型的最优解,引入了 IPSO 来确定船舶避碰决策(CADM)的可行解域。通过数值模拟和导航模拟器验证了所提出的避碰决策机制。结果表明,推荐的速度和航向能有效消除船舶与目标船舶之间的碰撞风险。
期刊介绍:
The Journal of Marine Science and Technology (JMST), presently indexed in EI and SCI Expanded, publishes original, high-quality, peer-reviewed research papers on marine studies including engineering, pure and applied science, and technology. The full text of the published papers is also made accessible at the JMST website to allow a rapid circulation.