Abulizi Abulaiti, Li Jia-Wei, Chen Sen-Lin, Yang Wan-Min
{"title":"A Novel Method to Enhance the Content and size of Y-211 Particles in YBCO bulk Superconductors Grown by RE+011 TSIG Process","authors":"Abulizi Abulaiti, Li Jia-Wei, Chen Sen-Lin, Yang Wan-Min","doi":"10.1007/s10948-024-06757-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, a novel method to improve the particle size and content of Y<sub>2</sub>BaCuO<sub>5</sub> (Y-211) in YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7 − x</sub> (YBCO) bulks was demonstrated. The single-domain YBCO bulks (20 mm in diameter) have been fabricated employing the RE+011 TSIG technique with different heating rates during the liquid phase infiltration (LPI) stage. The various heating rates on Y-211 size and its content in the final YBCO samples has been investigated in detail. The findings suggest that the average size of the Y-211 particles in the Y-123 matrix initially decreases followed by an increase, while its volume fraction gradually decreases with increasing heating rate. Furthermore, it is observed that the levitation force and the trapped fields exhibit an initial increase followed by a subsequent decrease as the heating rate increases. Among all the samples, sample S3 (heating rate of 30 °C/h) has the best magnetic levitation force and trapped field performances at 77 K, i.e., the largest values are of 45.3 N and 0.41 T, respectively. The results suggest that, while employing the RE+011 TSIG technique for YBCO bulk fabrication, the average size and volume fraction of Y-211 particles in the final sample can be further enhanced by controlling the heating rates during the LPI stage, obviating any need for chemical refining agents.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"37 5-7","pages":"853 - 859"},"PeriodicalIF":1.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06757-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, a novel method to improve the particle size and content of Y2BaCuO5 (Y-211) in YBa2Cu3O7 − x (YBCO) bulks was demonstrated. The single-domain YBCO bulks (20 mm in diameter) have been fabricated employing the RE+011 TSIG technique with different heating rates during the liquid phase infiltration (LPI) stage. The various heating rates on Y-211 size and its content in the final YBCO samples has been investigated in detail. The findings suggest that the average size of the Y-211 particles in the Y-123 matrix initially decreases followed by an increase, while its volume fraction gradually decreases with increasing heating rate. Furthermore, it is observed that the levitation force and the trapped fields exhibit an initial increase followed by a subsequent decrease as the heating rate increases. Among all the samples, sample S3 (heating rate of 30 °C/h) has the best magnetic levitation force and trapped field performances at 77 K, i.e., the largest values are of 45.3 N and 0.41 T, respectively. The results suggest that, while employing the RE+011 TSIG technique for YBCO bulk fabrication, the average size and volume fraction of Y-211 particles in the final sample can be further enhanced by controlling the heating rates during the LPI stage, obviating any need for chemical refining agents.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.