{"title":"Pressure-Induced Flat Bands and Electride Behavior in SC Mg","authors":"Sabri F. Elatresh","doi":"10.1007/s10948-025-06947-2","DOIUrl":null,"url":null,"abstract":"<div><p>The high-pressure phase diagram of Magnesium (Mg) has attracted significant attention due to its relevance as a constituent of Earth’s inner core (IC), where it profoundly influences physical behavior and properties under extreme conditions. A recent study has revealed multiple crystal structure transitions in Mg, including the emergence of non-close-packed phases at extreme pressures. We investigate the electronic structure of simple cubic (SC) Mg under extreme pressure using Density Functional Theory (DFT) calculations. At 1320 GPa, our analysis shows that charge density accumulates at the center of the unit cell, increasing as pressure rises. The electron localization function (ELF) reveals that electrons are not just confined to atomic sites but also extend into interstitial regions, suggesting a shift in bonding character driven by <i>p</i>-<i>d</i>-orbital contributions. Additionally, the electronic band structure and density of states (DOS) confirm that Mg remains metallic at this pressure. A distinct flat band appears along the X-M path in the Brillouin zone, indicating enhanced electronic correlations that could influence the transport properties of Mg. These results highlight how extreme compression reshapes electronic interactions, potentially leading to novel high-pressure phenomena.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-025-06947-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The high-pressure phase diagram of Magnesium (Mg) has attracted significant attention due to its relevance as a constituent of Earth’s inner core (IC), where it profoundly influences physical behavior and properties under extreme conditions. A recent study has revealed multiple crystal structure transitions in Mg, including the emergence of non-close-packed phases at extreme pressures. We investigate the electronic structure of simple cubic (SC) Mg under extreme pressure using Density Functional Theory (DFT) calculations. At 1320 GPa, our analysis shows that charge density accumulates at the center of the unit cell, increasing as pressure rises. The electron localization function (ELF) reveals that electrons are not just confined to atomic sites but also extend into interstitial regions, suggesting a shift in bonding character driven by p-d-orbital contributions. Additionally, the electronic band structure and density of states (DOS) confirm that Mg remains metallic at this pressure. A distinct flat band appears along the X-M path in the Brillouin zone, indicating enhanced electronic correlations that could influence the transport properties of Mg. These results highlight how extreme compression reshapes electronic interactions, potentially leading to novel high-pressure phenomena.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.