Estimation of Fracture Toughness with Small Specimens Based on TSM Model

IF 0.6 4区 工程技术 Q4 MECHANICS Mechanics of Solids Pub Date : 2024-06-04 DOI:10.1134/S0025654424602635
Jianhua Pan, Yu Ding
{"title":"Estimation of Fracture Toughness with Small Specimens Based on TSM Model","authors":"Jianhua Pan,&nbsp;Yu Ding","doi":"10.1134/S0025654424602635","DOIUrl":null,"url":null,"abstract":"<p>Fracture toughness is an important parameter in industry for measuring material properties. In order to obtain the fracture toughness of standard thickness materials it is necessary to go through a large number of fracture toughness experiments, but the cost is high. And in practice there are not that many eligible experimental materials to be able to conduct the experiment. If fracture toughness data are obtained for small specimens. Fracture toughness data for large and thick specimens can be predicted by the toughness scaling model (TSM). The relationship between fracture toughness based on Weibull’s principle of stress equivalence. Can effectively make up for the defect of the specimen’s own constraint degree is insufficient. The parameters of the Toughness scaling model are decisive for the accuracy of the predicted fracture toughness data. The traditional TSM calibration procedure is complex. Using a simplified Toughness scaling model can reduce many arithmetic steps in engineering. And this method was applied to calibrate the parameters for three materials. It was found that the predicted probability of failure-fracture toughness curves at a crack tip of 0.02 mm–0.03 mm for the low constraint specimens were informative although there was some error. Also, the linear relationship between the magnitude of the Weibull stress and the fracture toughness is independent of the material type. It is only related to the magnitude of parameter m.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 1","pages":"521 - 536"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424602635","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Fracture toughness is an important parameter in industry for measuring material properties. In order to obtain the fracture toughness of standard thickness materials it is necessary to go through a large number of fracture toughness experiments, but the cost is high. And in practice there are not that many eligible experimental materials to be able to conduct the experiment. If fracture toughness data are obtained for small specimens. Fracture toughness data for large and thick specimens can be predicted by the toughness scaling model (TSM). The relationship between fracture toughness based on Weibull’s principle of stress equivalence. Can effectively make up for the defect of the specimen’s own constraint degree is insufficient. The parameters of the Toughness scaling model are decisive for the accuracy of the predicted fracture toughness data. The traditional TSM calibration procedure is complex. Using a simplified Toughness scaling model can reduce many arithmetic steps in engineering. And this method was applied to calibrate the parameters for three materials. It was found that the predicted probability of failure-fracture toughness curves at a crack tip of 0.02 mm–0.03 mm for the low constraint specimens were informative although there was some error. Also, the linear relationship between the magnitude of the Weibull stress and the fracture toughness is independent of the material type. It is only related to the magnitude of parameter m.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 TSM 模型的小试样断裂韧性估算
摘要断裂韧性是工业领域衡量材料性能的一个重要参数。为了获得标准厚度材料的断裂韧性,必须进行大量的断裂韧性实验,但成本很高。而在实践中,能够进行实验的合格实验材料并不多。如果获得的是小试样的断裂韧性数据。大型和厚型试样的断裂韧性数据可以通过韧性标度模型(TSM)来预测。基于威布尔应力等效原理的断裂韧性之间的关系。可有效弥补试样自身约束程度不足的缺陷。韧性标定模型的参数对预测断裂韧性数据的准确性起着决定性作用。传统的 TSM 校准程序非常复杂。使用简化的韧性比例模型可以减少工程中的许多运算步骤。我们采用这种方法校准了三种材料的参数。结果发现,低约束试样在 0.02 毫米至 0.03 毫米裂纹尖端处的失效概率-断裂韧性曲线的预测结果虽然存在一定误差,但仍具有参考价值。此外,Weibull 应力大小与断裂韧性之间的线性关系与材料类型无关。它只与参数 m 的大小有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanics of Solids
Mechanics of Solids 医学-力学
CiteScore
1.20
自引率
42.90%
发文量
112
审稿时长
6-12 weeks
期刊介绍: Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.
期刊最新文献
Proper Motions of the Flat Structure of Cosserat Type Expansion of a Spherical Cavity in an Infinite Dilatant Medium Obeying the Drucker–Prager Yield Criterion and a Non-Associated Plastic Flow Rule Investigation of Thermoelastic behavior in a Three-Dimensional Homogeneous Half-Space with Reference Temperature-Dependent Material Properties Dynamic modeling and Multi-Objective Optimization of a 3DOF Reconfigurable Parallel Robot Nonlinear Poro-Visco-Thermal Vibrations in Piezo-Thermoelastic Hygroscopic Sandwich Shells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1