Cumulative Absolute Velocity (CAV) parameter estimation in earthquake emergency response based on a support vector machine

IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Journal of Seismology Pub Date : 2024-06-03 DOI:10.1007/s10950-024-10224-5
Heyi Liu, Wentao Sun, Shanyou Li, Xueying Zhou, Jindong Song
{"title":"Cumulative Absolute Velocity (CAV) parameter estimation in earthquake emergency response based on a support vector machine","authors":"Heyi Liu,&nbsp;Wentao Sun,&nbsp;Shanyou Li,&nbsp;Xueying Zhou,&nbsp;Jindong Song","doi":"10.1007/s10950-024-10224-5","DOIUrl":null,"url":null,"abstract":"<div><p>Rapid and accurate estimation of emergency response parameters during earthquakes is important in earthquake early warning (EEW) systems. Because earthquake rupture is not instantaneous, to accurately, safely, and reliably determine parameters and thresholds for emergency response, the cumulative absolute velocity (CAV) is used as the target parameter, and 7 P-wave characteristic parameters of strong ground motion records occurring 3 s after P-wave arrival at K-NET and KiK-net stations in Japan are used as inputs to construct a machine learning (ML) CAV prediction model based on the support vector machine (SVM) algorithm. The results show that compared with a single-parameter prediction algorithm, the proposed ML model can significantly reduce the error standard deviation and effectively address the phenomena of small value overestimation and large value underestimation. A confusion matrix analysis demonstrates that the 6-parameter model P<sub>a</sub>&amp;P<sub>v</sub>&amp;P<sub>d</sub>&amp;CAV&amp;I<sub>a</sub>&amp;IV2 shows the best performance in improving the prediction accuracy and provides a threshold selection strategy for threshold-based EEW emergency response.</p></div>","PeriodicalId":16994,"journal":{"name":"Journal of Seismology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10950-024-10224-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid and accurate estimation of emergency response parameters during earthquakes is important in earthquake early warning (EEW) systems. Because earthquake rupture is not instantaneous, to accurately, safely, and reliably determine parameters and thresholds for emergency response, the cumulative absolute velocity (CAV) is used as the target parameter, and 7 P-wave characteristic parameters of strong ground motion records occurring 3 s after P-wave arrival at K-NET and KiK-net stations in Japan are used as inputs to construct a machine learning (ML) CAV prediction model based on the support vector machine (SVM) algorithm. The results show that compared with a single-parameter prediction algorithm, the proposed ML model can significantly reduce the error standard deviation and effectively address the phenomena of small value overestimation and large value underestimation. A confusion matrix analysis demonstrates that the 6-parameter model Pa&Pv&Pd&CAV&Ia&IV2 shows the best performance in improving the prediction accuracy and provides a threshold selection strategy for threshold-based EEW emergency response.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的地震应急响应累积绝对速度 (CAV) 参数估计
在地震预警(EEW)系统中,快速准确地估算地震期间的应急响应参数非常重要。由于地震破裂并非瞬时发生,为了准确、安全、可靠地确定应急响应参数和阈值,本文以累积绝对速度(CAV)为目标参数,以日本 K-NET 和 KiK-net 台站 P 波到达后 3 秒发生的强地震动记录中的 7 个 P 波特征参数为输入,构建了基于支持向量机(SVM)算法的机器学习(ML)CAV 预测模型。结果表明,与单参数预测算法相比,所提出的 ML 模型可显著降低误差标准偏差,并有效解决小值高估和大值低估现象。混淆矩阵分析表明,6参数模型Pa&Pv&Pd&CAV&Ia&IV2在提高预测精度方面表现最佳,为基于阈值的EEW应急响应提供了阈值选择策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Seismology
Journal of Seismology 地学-地球化学与地球物理
CiteScore
3.30
自引率
6.20%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Seismology is an international journal specialising in all observational and theoretical aspects related to earthquake occurrence. Research topics may cover: seismotectonics, seismicity, historical seismicity, seismic source physics, strong ground motion studies, seismic hazard or risk, engineering seismology, physics of fault systems, triggered and induced seismicity, mining seismology, volcano seismology, earthquake prediction, structural investigations ranging from local to regional and global studies with a particular focus on passive experiments.
期刊最新文献
Source parameters of the May 28, 2016, Mihoub earthquake (Mw 5.4, Algeria) deduced from Bayesian modelling of Sentinel-1 SAR data Fault imaging using earthquake sequences: a revised seismotectonic model for the Albstadt Shear Zone, Southwest Germany A logic-tree based probabilistic seismic hazard assessment for the central ionian islands of cephalonia and ithaca (Western Greece) Developing machine learning-based ground motion models to predict peak ground velocity in Turkiye Fault structures of the Haichenghe fault zone in Liaoning, China from high-precision location based on dense array observation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1