Study of photophysical properties in bronsted acids for nitrogen atoms with different hybrid (sp, sp2, sp3) orbitals

IF 2.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of the Iranian Chemical Society Pub Date : 2024-06-02 DOI:10.1007/s13738-024-03048-0
Zhou Wang, Kaibo Hu, Chichong Lu, Guofan Jin
{"title":"Study of photophysical properties in bronsted acids for nitrogen atoms with different hybrid (sp, sp2, sp3) orbitals","authors":"Zhou Wang,&nbsp;Kaibo Hu,&nbsp;Chichong Lu,&nbsp;Guofan Jin","doi":"10.1007/s13738-024-03048-0","DOIUrl":null,"url":null,"abstract":"<div><p>Fluorescent tiny molecules that are resistant to acid have long been the center of interest. The nitrogen atoms on benzyl cyanide were <i>sp</i> hybridized, while the two nitrogen atoms at pyrimidine were <i>sp</i><sup>2</sup> hybridized in the primary structure that we constructed. With the addition of a protonic acid (H<sub>2</sub>SO<sub>4</sub>, CH<sub>3</sub>SO<sub>3</sub>H, and HF), the nitrogen atoms at acridine underwent <i>sp</i><sup>3</sup> hybridization, which caused the hydrogen protons to interact with the three types of nitrogen atoms to varying degrees. This distribution of the electron cloud density led to a decrease in fluorescence emission. Furthermore, Gaussian 09 software and DFT calculations were used to model its orbital conformation, which is the highest occupied molecular orbital—lowest unoccupied molecular orbital (HOMO–LUMO). Furthermore, its crystal structure was assigned to the orthorhombic system with stronger non-homogeneity (<i>a</i> = 8.9160 (4) Å, <i>b</i> = 44.289 (3) Å, <i>c</i> = 9.6131 (7) Å, <i>α</i> = 90°, <i>β</i> = 90°, <i>γ</i> = 90°, <i>V</i> = 3796.0 (4) Å<sup>3</sup>, z = 4, <i>Dc</i> = 1.244 g/cm<sup>3</sup>).</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"21 7","pages":"2039 - 2051"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Iranian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13738-024-03048-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorescent tiny molecules that are resistant to acid have long been the center of interest. The nitrogen atoms on benzyl cyanide were sp hybridized, while the two nitrogen atoms at pyrimidine were sp2 hybridized in the primary structure that we constructed. With the addition of a protonic acid (H2SO4, CH3SO3H, and HF), the nitrogen atoms at acridine underwent sp3 hybridization, which caused the hydrogen protons to interact with the three types of nitrogen atoms to varying degrees. This distribution of the electron cloud density led to a decrease in fluorescence emission. Furthermore, Gaussian 09 software and DFT calculations were used to model its orbital conformation, which is the highest occupied molecular orbital—lowest unoccupied molecular orbital (HOMO–LUMO). Furthermore, its crystal structure was assigned to the orthorhombic system with stronger non-homogeneity (a = 8.9160 (4) Å, b = 44.289 (3) Å, c = 9.6131 (7) Å, α = 90°, β = 90°, γ = 90°, V = 3796.0 (4) Å3, z = 4, Dc = 1.244 g/cm3).

Graphical abstract

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究具有不同杂化(sp、sp2、sp3)轨道的氮原子在支链烷酸中的光物理特性
长期以来,耐酸的荧光小分子一直是人们关注的焦点。在我们构建的一级结构中,苄基氰化物上的氮原子是 sp 杂化的,而嘧啶上的两个氮原子是 sp2 杂化的。加入质子酸(H2SO4、CH3SO3H 和 HF)后,吖啶上的氮原子发生 sp3 杂化,这导致氢质子与三种氮原子发生不同程度的相互作用。电子云密度的分布导致荧光发射减弱。此外,研究人员还利用高斯 09 软件和 DFT 计算来模拟其轨道构象,即最高占有分子轨道-最低未占有分子轨道(HOMO-LUMO)。此外,其晶体结构被归入具有较强非均质性的正交体系(a = 8.9160 (4) Å, b = 44.289 (3) Å, c = 9.6131 (7) Å, α = 90°, β = 90°, γ = 90°, V = 3796.0 (4) Å3, z = 4, Dc = 1.244 g/cm3)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
230
审稿时长
5.6 months
期刊介绍: JICS is an international journal covering general fields of chemistry. JICS welcomes high quality original papers in English dealing with experimental, theoretical and applied research related to all branches of chemistry. These include the fields of analytical, inorganic, organic and physical chemistry as well as the chemical biology area. Review articles discussing specific areas of chemistry of current chemical or biological importance are also published. JICS ensures visibility of your research results to a worldwide audience in science. You are kindly invited to submit your manuscript to the Editor-in-Chief or Regional Editor. All contributions in the form of original papers or short communications will be peer reviewed and published free of charge after acceptance.
期刊最新文献
Method for analyzing nitrogen trifluoride impurities in high-purity carbon tetrafluoride by gas chromatography Methods for the fluorescence sensing of thiamine (vitamin B1)-by copper metal organic framework and rhodamine b on graphene oxide with cucurbit[7]uril Efficient and selective oxidation of alcohols and hydrocarbons catalyzed by oxovanadium(IV) unsymmetrical salophen complex supported on silica-coated CoFe2O4 magnetic nanoparticles New luminescent Eu(III) and Er(III) Schiff base complexes: synthesis, characterization and luminescence properties Regioselective ROH-epoxystyrene-opening over MWCNTs-[N4] macrocycle comprising Cu(II), Fe(III) or Cr(III)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1