Machine learning and deep learning models for human activity recognition in security and surveillance: a review

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge and Information Systems Pub Date : 2024-06-04 DOI:10.1007/s10115-024-02122-6
Sheetal Waghchaware, Radhika Joshi
{"title":"Machine learning and deep learning models for human activity recognition in security and surveillance: a review","authors":"Sheetal Waghchaware, Radhika Joshi","doi":"10.1007/s10115-024-02122-6","DOIUrl":null,"url":null,"abstract":"<p>Human activity recognition (HAR) has received the significant attention in the field of security and surveillance due to its high potential for real-time monitoring, identifying the abnormal activities and situational awareness. HAR is able to identify the abnormal activity or behaviour patterns, which may indicate potential security risks. HAR system attempts to automatically provide the information and classification regarding activities performed in the environment by learning the data captured through sensor or video stream. The overview of existing research work in the security and surveillance area, which includes traditional, machine learning (ML) and deep learning (DL) algorithms applicable to field, is presented. The comparative analysis of different HAR techniques based on features, input source, public data sets is presented for quick understanding, and it focuses on the recent trends in HAR field. This review paper provides guidelines for the selection of appropriate algorithm, data set, performance metrics when evaluating HAR systems in the context of security and surveillance. Overall, this review aims to provide a comprehensive understanding of HAR in the field of security and surveillance and to serve as a basis for further research and development.</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"106 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02122-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Human activity recognition (HAR) has received the significant attention in the field of security and surveillance due to its high potential for real-time monitoring, identifying the abnormal activities and situational awareness. HAR is able to identify the abnormal activity or behaviour patterns, which may indicate potential security risks. HAR system attempts to automatically provide the information and classification regarding activities performed in the environment by learning the data captured through sensor or video stream. The overview of existing research work in the security and surveillance area, which includes traditional, machine learning (ML) and deep learning (DL) algorithms applicable to field, is presented. The comparative analysis of different HAR techniques based on features, input source, public data sets is presented for quick understanding, and it focuses on the recent trends in HAR field. This review paper provides guidelines for the selection of appropriate algorithm, data set, performance metrics when evaluating HAR systems in the context of security and surveillance. Overall, this review aims to provide a comprehensive understanding of HAR in the field of security and surveillance and to serve as a basis for further research and development.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于安防和监控领域人类活动识别的机器学习和深度学习模型:综述
人类活动识别(HAR)因其在实时监控、识别异常活动和态势感知方面的巨大潜力,在安全和监控领域备受关注。HAR 能够识别异常活动或行为模式,这可能预示着潜在的安全风险。HAR 系统试图通过学习传感器或视频流捕获的数据,自动提供有关环境中活动的信息和分类。本文概述了安防和监控领域的现有研究工作,包括适用于该领域的传统算法、机器学习(ML)算法和深度学习(DL)算法。为了便于快速理解,本文对基于特征、输入源和公共数据集的不同 HAR 技术进行了比较分析,并重点介绍了 HAR 领域的最新趋势。本综述论文为在安防和监控背景下评估 HAR 系统时选择合适的算法、数据集和性能指标提供了指导。总之,本综述旨在提供对安防和监控领域 HAR 的全面了解,并为进一步研究和开发奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Knowledge and Information Systems
Knowledge and Information Systems 工程技术-计算机:人工智能
CiteScore
5.70
自引率
7.40%
发文量
152
审稿时长
7.2 months
期刊介绍: Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.
期刊最新文献
Dynamic evolution of causal relationships among cryptocurrencies: an analysis via Bayesian networks Deep multi-semantic fuzzy K-means with adaptive weight adjustment Class incremental named entity recognition without forgetting Spectral clustering with scale fairness constraints Supervised kernel-based multi-modal Bhattacharya distance learning for imbalanced data classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1