Inhibition of the Expression of NRF2 Transcription Factor Mediated by miR-155 Causes a Decrease in the Viability of Melanoma Cells Regardless of Redox Status

Q4 Biochemistry, Genetics and Molecular Biology Cell and Tissue Biology Pub Date : 2024-06-03 DOI:10.1134/s1990519x2470024x
V. A. Kutsenko, D. A. Dashkova, T. G. Ruksha
{"title":"Inhibition of the Expression of NRF2 Transcription Factor Mediated by miR-155 Causes a Decrease in the Viability of Melanoma Cells Regardless of Redox Status","authors":"V. A. Kutsenko, D. A. Dashkova, T. G. Ruksha","doi":"10.1134/s1990519x2470024x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The <i>NFE2L2</i> gene of the redox-sensitive transcription factor NRF2 is a target of miR-155 microRNA. In the present work, a transfection of miR-155 imitator (mimic) was performed into dacarbazine-resistant B16 melanoma cells. It was determined that, under the influence of miR-155 microRNA mimic, the expression level of NRF2 encoded by the <i>NFE2L2</i> decreases in melanoma cells both in conditions of oxidative stress and without it. A decrease in the level of NRF2 was accompanied by a decrease in the viability of dacarbazine-resistant melanoma cells. Thus, miR-155-mediated activation of NRF2, which regulates the intensity of antioxidant processes in the cell, can be associated with the preservation of viability and development of drug resistance of tumor cells. The latter can be used to overcome chemoresistance in the treatment of oncological diseases.</p>","PeriodicalId":9705,"journal":{"name":"Cell and Tissue Biology","volume":"309 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1990519x2470024x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The NFE2L2 gene of the redox-sensitive transcription factor NRF2 is a target of miR-155 microRNA. In the present work, a transfection of miR-155 imitator (mimic) was performed into dacarbazine-resistant B16 melanoma cells. It was determined that, under the influence of miR-155 microRNA mimic, the expression level of NRF2 encoded by the NFE2L2 decreases in melanoma cells both in conditions of oxidative stress and without it. A decrease in the level of NRF2 was accompanied by a decrease in the viability of dacarbazine-resistant melanoma cells. Thus, miR-155-mediated activation of NRF2, which regulates the intensity of antioxidant processes in the cell, can be associated with the preservation of viability and development of drug resistance of tumor cells. The latter can be used to overcome chemoresistance in the treatment of oncological diseases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
miR-155 介导的 NRF2 转录因子的表达抑制会降低黑色素瘤细胞的活力,与氧化还原状态无关
摘要 氧化还原敏感转录因子 NRF2 的 NFE2L2 基因是 miR-155 microRNA 的靶标。本研究将 miR-155 模仿物(mimic)转染到抗达卡巴嗪的 B16 黑色素瘤细胞中。结果表明,在 miR-155 microRNA 模拟物的影响下,黑色素瘤细胞中 NFE2L2 编码的 NRF2 的表达水平在氧化应激条件下和无氧化应激条件下都会下降。NRF2 水平的降低伴随着抗达卡巴嗪黑色素瘤细胞活力的降低。因此,miR-155 介导的 NRF2 激活可调节细胞内抗氧化过程的强度,这可能与肿瘤细胞存活率的保持和耐药性的产生有关。后者可用于克服肿瘤疾病治疗中的化疗耐药性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell and Tissue Biology
Cell and Tissue Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
0.80
自引率
0.00%
发文量
51
期刊介绍: The journal publishes papers on vast aspects of cell research, including morphology, biochemistry, biophysics, genetics, molecular biology, immunology. The journal accepts original experimental studies, theoretical articles suggesting novel principles and approaches, presentations of new hypotheses, reviews highlighting major developments in cell biology, discussions. The main objective of the journal is to provide a competent representation and integration of research made on cells (animal and plant cells, both in vivo and in cell culture) offering insight into the structure and functions of live cells as a whole. Characteristically, the journal publishes articles on biology of free-living and parasitic protists, which, unlike Metazoa, are eukaryotic organisms at the cellular level of organization.
期刊最新文献
Neurons Structure and Cytokine Expression after Lithium Carbonate Treatment on Melanoma Mice Model Synthetic Antioxidant TS-13 Reduces the Cardiotoxicity of Doxorubicin Relaxation of Steric Strains of TTR-Type Amyloid Fibril Inhibitors Radically Changes the Results of Their Virtual Screening esiRNA Mediated Silencing of HIF1A Regulates Migration, Invasion, Apoptosis, and Proliferation of MDA-MB-231 Cells The New Synthetic Monophenolic Antioxidant TS-13 Penetrates the Blood–Brain Barrier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1