{"title":"BLCM: a BP-LGBM-based atmospheric visibility forecasting model","authors":"Lu Yang, Rongrong Li, Xiaobin Qiu, Chongke Bi","doi":"10.1007/s12650-024-01009-6","DOIUrl":null,"url":null,"abstract":"<p>The atmospheric visibility is not only related to environmental quality and public health, but also has a significantly impact on industries such as navigation and aviation. The conventional Numerical weather prediction (NWP) method is run by a supercomputer with high computational cost. On the other hand, due to the inhomogeneity of the visibility distribution, most of machine learning models always analyze and predict visibility on a seasonal basis. To address these issues, we propose a visibility prediction model called BP-LGBM Combination Method (BLCM), which combines the Back Propagation (BP) neural network and the Light Gradient Boosting Machine (LGBM) classifier. By leveraging the advantages of regression and classification algorithms, this model achieves high accuracy predictions of visibility values while significantly reducing computation costs. Meanwhile, in order to resolve the seasonal issue, the data decision filtering process was proposed. It can output different categories of visibility prediction in any season, which expands the applicability of visibility forecasting to any period throughout the year. We also designed a visual analysis system for domain scientists to interactively explore the prediction results and their causes. Finally, the effectiveness of the proposed method has been demonstrated through several ablation experiments, contrast experiments and case studies.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"36 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visualization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12650-024-01009-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The atmospheric visibility is not only related to environmental quality and public health, but also has a significantly impact on industries such as navigation and aviation. The conventional Numerical weather prediction (NWP) method is run by a supercomputer with high computational cost. On the other hand, due to the inhomogeneity of the visibility distribution, most of machine learning models always analyze and predict visibility on a seasonal basis. To address these issues, we propose a visibility prediction model called BP-LGBM Combination Method (BLCM), which combines the Back Propagation (BP) neural network and the Light Gradient Boosting Machine (LGBM) classifier. By leveraging the advantages of regression and classification algorithms, this model achieves high accuracy predictions of visibility values while significantly reducing computation costs. Meanwhile, in order to resolve the seasonal issue, the data decision filtering process was proposed. It can output different categories of visibility prediction in any season, which expands the applicability of visibility forecasting to any period throughout the year. We also designed a visual analysis system for domain scientists to interactively explore the prediction results and their causes. Finally, the effectiveness of the proposed method has been demonstrated through several ablation experiments, contrast experiments and case studies.
Journal of VisualizationCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
CiteScore
3.40
自引率
5.90%
发文量
79
审稿时长
>12 weeks
期刊介绍:
Visualization is an interdisciplinary imaging science devoted to making the invisible visible through the techniques of experimental visualization and computer-aided visualization.
The scope of the Journal is to provide a place to exchange information on the latest visualization technology and its application by the presentation of latest papers of both researchers and technicians.