Yuki Ono, Heikki Remes, Koji Kinoshita, Halid Can Yıldırım, Alain Nussbaumer
{"title":"Local relaxation of residual stress in high-strength steel welded joints treated by HFMI","authors":"Yuki Ono, Heikki Remes, Koji Kinoshita, Halid Can Yıldırım, Alain Nussbaumer","doi":"10.1007/s40194-024-01789-3","DOIUrl":null,"url":null,"abstract":"<div><p>This research studies the influence of high-peak loads on local relaxation of residual stress and fatigue damage in high-strength steel welded joints treated by high-frequency mechanical impact (HFMI) treatment. The joint behavior is simulated with elastic–plastic finite element analyses that account for the combined effect of geometry, residual stress, and material properties. This simulation uses two treated geometry models: with or without surface roughness on HFMI groove, and two material properties: S690QL and AH36 structural steels. The results show that surface roughness and load history, including high-peak loads, significantly influence fatigue response. It is revealed that the model neglecting the surface roughness cannot represent the amount of residual stress change and fatigue damage at less than 100 µm depth from the surface. In addition, the local yield strength in the HFMI-treated zone affects the plasticity behavior near the surface imperfection under the high-peak loads, which provides comparatively different fatigue damage between S690QL and AH36 in some cases. As a result, this study provides the further understanding needed to develop a robust modeling approach to the fatigue life estimation of HFMI-treated welds subjected to high-peak loads.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 8","pages":"2187 - 2202"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01789-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-024-01789-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
This research studies the influence of high-peak loads on local relaxation of residual stress and fatigue damage in high-strength steel welded joints treated by high-frequency mechanical impact (HFMI) treatment. The joint behavior is simulated with elastic–plastic finite element analyses that account for the combined effect of geometry, residual stress, and material properties. This simulation uses two treated geometry models: with or without surface roughness on HFMI groove, and two material properties: S690QL and AH36 structural steels. The results show that surface roughness and load history, including high-peak loads, significantly influence fatigue response. It is revealed that the model neglecting the surface roughness cannot represent the amount of residual stress change and fatigue damage at less than 100 µm depth from the surface. In addition, the local yield strength in the HFMI-treated zone affects the plasticity behavior near the surface imperfection under the high-peak loads, which provides comparatively different fatigue damage between S690QL and AH36 in some cases. As a result, this study provides the further understanding needed to develop a robust modeling approach to the fatigue life estimation of HFMI-treated welds subjected to high-peak loads.
期刊介绍:
The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.