CSIML: a cost-sensitive and iterative machine-learning method for small and imbalanced materials data sets

IF 1.4 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Chemistry Letters Pub Date : 2024-05-30 DOI:10.1093/chemle/upae090
Shengzhou Li, Ayako Nakata
{"title":"CSIML: a cost-sensitive and iterative machine-learning method for small and imbalanced materials data sets","authors":"Shengzhou Li, Ayako Nakata","doi":"10.1093/chemle/upae090","DOIUrl":null,"url":null,"abstract":"Materials science research benefits from the powerful machine-learning (ML) surrogate models, but it is also limited by the implicit requirement for sufficiently big and balanced data distribution for ML. In this paper, we propose a model to obtain more credible results for small and imbalanced materials data sets as well as chemical knowledge. Taking 2 bandgaps imbalanced data sets as instances, we demonstrate the usability and performance of our model compared with common ML models with normal sampling and resampling methods.","PeriodicalId":9862,"journal":{"name":"Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chemle/upae090","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Materials science research benefits from the powerful machine-learning (ML) surrogate models, but it is also limited by the implicit requirement for sufficiently big and balanced data distribution for ML. In this paper, we propose a model to obtain more credible results for small and imbalanced materials data sets as well as chemical knowledge. Taking 2 bandgaps imbalanced data sets as instances, we demonstrate the usability and performance of our model compared with common ML models with normal sampling and resampling methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CSIML:针对小型不平衡材料数据集的成本敏感迭代机器学习方法
材料科学研究得益于强大的机器学习(ML)代用模型,但也受限于 ML 对足够大且均衡的数据分布的隐性要求。在本文中,我们提出了一种模型,以获得更可信的结果,适用于小而不平衡的材料数据集以及化学知识。以 2 个带隙不平衡数据集为例,我们展示了我们的模型与采用正常采样和重采样方法的普通 ML 模型相比的可用性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry Letters
Chemistry Letters 化学-化学综合
CiteScore
3.00
自引率
6.20%
发文量
260
审稿时长
1.2 months
期刊介绍: Chemistry Letters covers the following topics: -Organic Chemistry- Physical Chemistry- Inorganic Chemistry- Analytical Chemistry- Materials Chemistry- Polymer Chemistry- Supramolecular Chemistry- Organometallic Chemistry- Coordination Chemistry- Biomolecular Chemistry- Natural Products and Medicinal Chemistry- Electrochemistry
期刊最新文献
Tin Oxides as a Negative Electrode Material for Mg-Ion Batteries Chemometrics-assisted functionalization of boronic acid-derived supramolecules Regulating oxidation states of Cu nanowires for enhanced catalytic reduction of 4-nitrophenol Preliminary studies on ion-pair extractions of Zr, Hf, Nb, and Ta using extractants having tertiary N atom from H2SO4 and HF Neural Network Potential Calculations for Melamine Adsorption onto Pt (111) Comparing with Density Functional Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1