S. Mojtaba Amininasab, Nadiye Fallahi, Parisa Mohammadi, Zahed Shami
{"title":"Synthesis and characterization of the hyperbranched polymers based on nanoparticles for removal of pollutant from water","authors":"S. Mojtaba Amininasab, Nadiye Fallahi, Parisa Mohammadi, Zahed Shami","doi":"10.1007/s13233-024-00264-8","DOIUrl":null,"url":null,"abstract":"<div><p>Harmful heavy metals have a significant effect on the toxicity of wastewater due to their non-biodegradability; hence, they will harm living things. Graphene oxide has been studied in recent research to remove these heavy metals. This study was carried out to determine the characterization of graphene oxide-based hyperbranched polymers (GO-MHBP) and their batch experiments on removing heavy metals (Cr<sup>3+</sup> and Hg<sup>2+</sup>). The surface of the graphene oxide particles was modified by 3-(aminopropyl) triethoxysilane, and then hyperbranched polymers were fabricated by incorporating 3,5-diaminobenzoic acid and maleic anhydride. The synthesized polymers were characterized physically and morphologically using FT-IR, FE-SEM, EDX, and TGA techniques. Moreover, they were assessed in terms of adsorption capacity to remove pollutants of Cr<sup>3+</sup> and Hg<sup>2+</sup>. To that end, the effect of pH, adsorbent amount, contact time, and initial concentrations of metal ions was evaluated. Furthermore, the adsorption kinetics and isothermal behavior were investigated for the adsorption efficiency of GO-MHBP nanocomposite. The adsorption process was consistent with the second-order kinetic model and the Langmuir isotherm model. Eventually, the GO-MHBP could serve as promising adsorbents for potential application in the removal of Cr<sup>3+</sup> and Hg<sup>2+</sup> from wastewater.</p><h3>Graphical abstract</h3><p>Graphene oxide-based hyperbranched polymers provided an effective adsorbent system for heavy metal removal. These nanocomposites are significant for the remediation and removal of Cr<sup>3+</sup> and Hg<sup>2+</sup> ions from wastewater due to their simple synthesis method and low cost</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"32 8","pages":"799 - 809"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13233-024-00264-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Harmful heavy metals have a significant effect on the toxicity of wastewater due to their non-biodegradability; hence, they will harm living things. Graphene oxide has been studied in recent research to remove these heavy metals. This study was carried out to determine the characterization of graphene oxide-based hyperbranched polymers (GO-MHBP) and their batch experiments on removing heavy metals (Cr3+ and Hg2+). The surface of the graphene oxide particles was modified by 3-(aminopropyl) triethoxysilane, and then hyperbranched polymers were fabricated by incorporating 3,5-diaminobenzoic acid and maleic anhydride. The synthesized polymers were characterized physically and morphologically using FT-IR, FE-SEM, EDX, and TGA techniques. Moreover, they were assessed in terms of adsorption capacity to remove pollutants of Cr3+ and Hg2+. To that end, the effect of pH, adsorbent amount, contact time, and initial concentrations of metal ions was evaluated. Furthermore, the adsorption kinetics and isothermal behavior were investigated for the adsorption efficiency of GO-MHBP nanocomposite. The adsorption process was consistent with the second-order kinetic model and the Langmuir isotherm model. Eventually, the GO-MHBP could serve as promising adsorbents for potential application in the removal of Cr3+ and Hg2+ from wastewater.
Graphical abstract
Graphene oxide-based hyperbranched polymers provided an effective adsorbent system for heavy metal removal. These nanocomposites are significant for the remediation and removal of Cr3+ and Hg2+ ions from wastewater due to their simple synthesis method and low cost
期刊介绍:
Original research on all aspects of polymer science, engineering and technology, including nanotechnology
Presents original research articles on all aspects of polymer science, engineering and technology
Coverage extends to such topics as nanotechnology, biotechnology and information technology
The English-language journal of the Polymer Society of Korea
Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.