{"title":"Interfacial Shear Rheology of the Waxy Oil-Water Interfacial Layer Construction by Span80/60/65: Influence of Hydrophobic Chain Structure","authors":"Chuanshuo Wang, Xiaofang Lv, Bingcai Sun, Qianli Ma, Yang Liu, Shidong Zhou, Jimiao Duan","doi":"10.1134/S0965544124020087","DOIUrl":null,"url":null,"abstract":"<p>The waxy oil-water interface has become a topic issue in the field of a two-phase oil-water pipe flow. Although some progress has been achieved in the understanding of interfacial rheological properties of the water-in-oil emulsion (W/O), the effect of surfactants (the main constituents of petroleum crude oil) still remains unclear. To test whether the structure of hydrophobic chains of surfactants influences the waxy oil-water interface, we monitored interfacial rheological parameters under different nonionic surfactants (Span80/60/65) using a DWR interfacial shear rheometer. Among these surfactants, the oil-water interface of Span65 characterized by multi-hydrophobic chains had the largest interfacial viscosity and critical storage modulus. A weak strain overshoot interface of Span65 suggested that sorbitan tristearate molecules provided a dominant contribution to the interfacial rheological properties of the waxy oil-water interface with much fewer effects of the interaction between wax molecules and surfactants. However, Span60/80 with a single hydrophobic chain was coupled to wax molecules and reshaped the waxy oil-water interface structure, which replaced the original wax crystal position (the interfacial viscosity and critical storage modulus decrease) and yielded an interfacial structure (the critical strain increase). The wax-surfactant interactions of Span60/80 with different hydrophobic chain saturation were discussed. These interfacial properties are of practical importance for the technological operations in oil production.</p>","PeriodicalId":725,"journal":{"name":"Petroleum Chemistry","volume":"64 3","pages":"357 - 365"},"PeriodicalIF":1.3000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0965544124020087","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
The waxy oil-water interface has become a topic issue in the field of a two-phase oil-water pipe flow. Although some progress has been achieved in the understanding of interfacial rheological properties of the water-in-oil emulsion (W/O), the effect of surfactants (the main constituents of petroleum crude oil) still remains unclear. To test whether the structure of hydrophobic chains of surfactants influences the waxy oil-water interface, we monitored interfacial rheological parameters under different nonionic surfactants (Span80/60/65) using a DWR interfacial shear rheometer. Among these surfactants, the oil-water interface of Span65 characterized by multi-hydrophobic chains had the largest interfacial viscosity and critical storage modulus. A weak strain overshoot interface of Span65 suggested that sorbitan tristearate molecules provided a dominant contribution to the interfacial rheological properties of the waxy oil-water interface with much fewer effects of the interaction between wax molecules and surfactants. However, Span60/80 with a single hydrophobic chain was coupled to wax molecules and reshaped the waxy oil-water interface structure, which replaced the original wax crystal position (the interfacial viscosity and critical storage modulus decrease) and yielded an interfacial structure (the critical strain increase). The wax-surfactant interactions of Span60/80 with different hydrophobic chain saturation were discussed. These interfacial properties are of practical importance for the technological operations in oil production.
期刊介绍:
Petroleum Chemistry (Neftekhimiya), founded in 1961, offers original papers on and reviews of theoretical and experimental studies concerned with current problems of petroleum chemistry and processing such as chemical composition of crude oils and natural gas liquids; petroleum refining (cracking, hydrocracking, and catalytic reforming); catalysts for petrochemical processes (hydrogenation, isomerization, oxidation, hydroformylation, etc.); activation and catalytic transformation of hydrocarbons and other components of petroleum, natural gas, and other complex organic mixtures; new petrochemicals including lubricants and additives; environmental problems; and information on scientific meetings relevant to these areas.
Petroleum Chemistry publishes articles on these topics from members of the scientific community of the former Soviet Union.