Liwei Tang, Xinxu Zhu, Yu Ma, Haojie Xu, Shiguo Han, Yi Liu, Yaoyao Chen, Daohua Wang, Junhua Luo, Zhihua Sun
{"title":"Unusual bendable soft molecule-based ferroelectric crystals enabling the flexible photo-pyroelectric detection","authors":"Liwei Tang, Xinxu Zhu, Yu Ma, Haojie Xu, Shiguo Han, Yi Liu, Yaoyao Chen, Daohua Wang, Junhua Luo, Zhihua Sun","doi":"10.1002/inf2.12593","DOIUrl":null,"url":null,"abstract":"<p>Soft molecule-based ferroelectrics with unique structural flexibility hold a promise for versatile applications of non-volatile memory, imaging and photovoltaic devices. Except for few polymers (e.g., polyvinylidene fluoride, PVDF), it is challenging to exploit soft ferroelectric crystals toward free-standing flexible photoactive devices. We here report a multiaxial soft molecule-based ferroelectric, (<i>n-</i>PA)<sub>2</sub>PbCl<sub>4</sub> (<b>1</b>, where <i>n-</i>PA<sup>+</sup> is <i>n</i>-pentylammonium), of which spontaneous polarization can be reversibly switched in both crystal and powder forms. Strikingly, single crystals of <b>1</b> have unusual structural flexibility and bendability, achieving the self-standing bending with a bending radius of ~0.22 mm. Besides, the pyroelectric activities are also preserved for these single crystals after several bending cycles. Further, the bendable crystal-based photodetector of <b>1</b> allows broadband photoactivities via the photo-pyroelectric effect, covering a wide range from 405 to 940 nm spectral region, breaking through the limit of optical absorption bandgap. As the first study of bendable free-standing photo-pyroelectric detectors in ferroelectric crystals, our work sheds light on the assembly of flexible smart photoelectric devices.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 10","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12593","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12593","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Soft molecule-based ferroelectrics with unique structural flexibility hold a promise for versatile applications of non-volatile memory, imaging and photovoltaic devices. Except for few polymers (e.g., polyvinylidene fluoride, PVDF), it is challenging to exploit soft ferroelectric crystals toward free-standing flexible photoactive devices. We here report a multiaxial soft molecule-based ferroelectric, (n-PA)2PbCl4 (1, where n-PA+ is n-pentylammonium), of which spontaneous polarization can be reversibly switched in both crystal and powder forms. Strikingly, single crystals of 1 have unusual structural flexibility and bendability, achieving the self-standing bending with a bending radius of ~0.22 mm. Besides, the pyroelectric activities are also preserved for these single crystals after several bending cycles. Further, the bendable crystal-based photodetector of 1 allows broadband photoactivities via the photo-pyroelectric effect, covering a wide range from 405 to 940 nm spectral region, breaking through the limit of optical absorption bandgap. As the first study of bendable free-standing photo-pyroelectric detectors in ferroelectric crystals, our work sheds light on the assembly of flexible smart photoelectric devices.
期刊介绍:
InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.