Molecule Crowding Strategy in Polymer Electrolytes Inducing Stable Interfaces for All-Solid-State Lithium Batteries

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-06-05 DOI:10.1002/adma.202403848
Hong Zhang, Jiahui Deng, Hantao Xu, Haoran Xu, Zixin Xiao, Fan Fei, Wei Peng, Lin Xu, Yu Cheng, Qin Liu, Guo-Hua Hu, Liqiang Mai
{"title":"Molecule Crowding Strategy in Polymer Electrolytes Inducing Stable Interfaces for All-Solid-State Lithium Batteries","authors":"Hong Zhang,&nbsp;Jiahui Deng,&nbsp;Hantao Xu,&nbsp;Haoran Xu,&nbsp;Zixin Xiao,&nbsp;Fan Fei,&nbsp;Wei Peng,&nbsp;Lin Xu,&nbsp;Yu Cheng,&nbsp;Qin Liu,&nbsp;Guo-Hua Hu,&nbsp;Liqiang Mai","doi":"10.1002/adma.202403848","DOIUrl":null,"url":null,"abstract":"<p>All-solid-state lithium batteries with polymer electrolytes suffer from electrolyte decomposition and lithium dendrites because of the unstable electrode/electrolyte interfaces. Herein, a molecule crowding strategy is proposed to modulate the Li<sup>+</sup> coordinated structure, thus in situ constructing the stable interfaces. Since 15-crown-5 possesses superior compatibility with polymer and electrostatic repulsion for anion of lithium salt, the anions are forced to crowd into a Li<sup>+</sup> coordinated structure to weaken the Li<sup>+</sup> coordination with polymer and boost the Li<sup>+</sup> transport. The coordinated anions prior decompose to form LiF-rich, thin, and tough interfacial passivation layers for stabilizing the electrode/electrolyte interfaces. Thus, the symmetric Li–Li cell can stably operate over 4360 h, the LiFePO<sub>4</sub>||Li full battery presents 97.18% capacity retention in 700 cycles at 2 C, and the NCM811||Li full battery possesses the capacity retention of 83.17% after 300 cycles. The assembled pouch cell shows excellent flexibility (stand for folding over 2000 times) and stability (89.42% capacity retention after 400 cycles). This work provides a promising strategy to regulate interfacial chemistry by modulating the ion environment to accommodate the interfacial issues and will inspire more effective approaches to general interface issues for polymer electrolytes.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 31","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202403848","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

All-solid-state lithium batteries with polymer electrolytes suffer from electrolyte decomposition and lithium dendrites because of the unstable electrode/electrolyte interfaces. Herein, a molecule crowding strategy is proposed to modulate the Li+ coordinated structure, thus in situ constructing the stable interfaces. Since 15-crown-5 possesses superior compatibility with polymer and electrostatic repulsion for anion of lithium salt, the anions are forced to crowd into a Li+ coordinated structure to weaken the Li+ coordination with polymer and boost the Li+ transport. The coordinated anions prior decompose to form LiF-rich, thin, and tough interfacial passivation layers for stabilizing the electrode/electrolyte interfaces. Thus, the symmetric Li–Li cell can stably operate over 4360 h, the LiFePO4||Li full battery presents 97.18% capacity retention in 700 cycles at 2 C, and the NCM811||Li full battery possesses the capacity retention of 83.17% after 300 cycles. The assembled pouch cell shows excellent flexibility (stand for folding over 2000 times) and stability (89.42% capacity retention after 400 cycles). This work provides a promising strategy to regulate interfacial chemistry by modulating the ion environment to accommodate the interfacial issues and will inspire more effective approaches to general interface issues for polymer electrolytes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚合物电解质中的分子排挤策略诱导全固态锂电池的稳定界面。
使用聚合物电解质的全固态锂电池因电极/电解质界面不稳定而导致电解质分解和锂枝晶。在此,我们提出了一种分子排挤策略来调节 Li+ 配位结构,从而在原位构建稳定的界面。由于 15-crown-5 与聚合物具有良好的相容性,且对锂盐阴离子具有静电排斥力,因此阴离子会被迫挤入 Li+ 配位结构,从而削弱 Li+ 与聚合物的配位,促进 Li+ 的传输。配位阴离子在分解之前会形成富含 LiF、薄而坚韧的界面钝化层,以稳定电极/电解质界面。因此,对称锂离子电池可稳定工作 4360 小时,磷酸铁锂全电池在 2 C 下循环 700 次后容量保持率达 97.18%,NCM811||锂全电池循环 300 次后容量保持率达 83.17%。组装好的袋装电池具有出色的灵活性(可折叠 2000 次以上)和稳定性(400 次循环后容量保持率为 89.42%)。这项工作为通过调节离子环境来调节界面化学以适应界面问题提供了一种前景广阔的策略,并将为解决聚合物电解质的一般界面问题提供更有效的方法。本文受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Organic Ink Multi-Material 3D Printing of Sustainable Soft Systems (Adv. Mater. 4/2025) Ultraflexible Vertical Corbino Organic Electrochemical Transistors for Epidermal Signal Monitoring (Adv. Mater. 4/2025) Motion-Adaptive Tessellated Skin Patches With Switchable Adhesion for Wearable Electronics (Adv. Mater. 4/2025) Oxychloride Polyanion Clustered Solid-State Electrolytes via Hydrate-Assisted Synthesis for All-Solid-State Batteries (Adv. Mater. 4/2025) Ultrafast Symmetry Control in Photoexcited Quantum Dots (Adv. Mater. 4/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1