Nelly Seusing, Sebastian Strauss, Robert Fleischmann, Christina Nafz, Sergiu Groppa, Muthuraman Muthuraman, Hao Ding, Winston D Byblow, Martin Lotze, Matthias Grothe
{"title":"The excitability of ipsilateral motor evoked potentials is not task-specific and spatially distinct from the contralateral motor hotspot.","authors":"Nelly Seusing, Sebastian Strauss, Robert Fleischmann, Christina Nafz, Sergiu Groppa, Muthuraman Muthuraman, Hao Ding, Winston D Byblow, Martin Lotze, Matthias Grothe","doi":"10.1007/s00221-024-06851-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The role of ipsilateral descending motor pathways in voluntary movement of humans is still a matter of debate, with partly contradictory results. The aim of our study therefore was to examine the excitability of ipsilateral motor evoked potentials (iMEPs) regarding site and the specificity for unilateral and bilateral elbow flexion extension tasks.</p><p><strong>Methods: </strong>MR-navigated transcranial magnetic stimulation mapping of the dominant hemisphere was performed in twenty healthy participants during tonic unilateral (iBB), bilateral homologous (bBB) or bilateral antagonistic elbow flexion-extension (iBB-cAE), the map center of gravity (CoG) and iMEP area from BB were obtained.</p><p><strong>Results: </strong>The map CoG of the ipsilateral BB was located more anterior-laterally than the hotspot of the contralateral BB within the primary motor cortex, with a significant difference in CoG in iBB and iBB-cAE, but not bBB compared to the hotspot for the contralateral BB (each p < 0.05). However, different tasks had no effect on the size of the iMEPs.</p><p><strong>Conclusion: </strong>Our data demonstrated that excitability of ipsilateral and contralateral MEP differ spatially in a task-specific manner suggesting the involvement of different motor networks within the motor cortex.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"1851-1859"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252234/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-024-06851-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The role of ipsilateral descending motor pathways in voluntary movement of humans is still a matter of debate, with partly contradictory results. The aim of our study therefore was to examine the excitability of ipsilateral motor evoked potentials (iMEPs) regarding site and the specificity for unilateral and bilateral elbow flexion extension tasks.
Methods: MR-navigated transcranial magnetic stimulation mapping of the dominant hemisphere was performed in twenty healthy participants during tonic unilateral (iBB), bilateral homologous (bBB) or bilateral antagonistic elbow flexion-extension (iBB-cAE), the map center of gravity (CoG) and iMEP area from BB were obtained.
Results: The map CoG of the ipsilateral BB was located more anterior-laterally than the hotspot of the contralateral BB within the primary motor cortex, with a significant difference in CoG in iBB and iBB-cAE, but not bBB compared to the hotspot for the contralateral BB (each p < 0.05). However, different tasks had no effect on the size of the iMEPs.
Conclusion: Our data demonstrated that excitability of ipsilateral and contralateral MEP differ spatially in a task-specific manner suggesting the involvement of different motor networks within the motor cortex.
期刊介绍:
Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.