Injectable ultrasonic sensor for wireless monitoring of intracranial signals

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2024-06-05 DOI:10.1038/s41586-024-07334-y
Hanchuan Tang, Yueying Yang, Zhen Liu, Wenlong Li, Yipeng Zhang, Yizhou Huang, Tianyu Kang, Yang Yu, Na Li, Ye Tian, Xurui Liu, Yifan Cheng, Zhouping Yin, Xiaobing Jiang, Xiaodong Chen, Jianfeng Zang
{"title":"Injectable ultrasonic sensor for wireless monitoring of intracranial signals","authors":"Hanchuan Tang, Yueying Yang, Zhen Liu, Wenlong Li, Yipeng Zhang, Yizhou Huang, Tianyu Kang, Yang Yu, Na Li, Ye Tian, Xurui Liu, Yifan Cheng, Zhouping Yin, Xiaobing Jiang, Xiaodong Chen, Jianfeng Zang","doi":"10.1038/s41586-024-07334-y","DOIUrl":null,"url":null,"abstract":"Direct and precise monitoring of intracranial physiology holds immense importance in delineating injuries, prognostication and averting disease1. Wired clinical instruments that use percutaneous leads are accurate but are susceptible to infection, patient mobility constraints and potential surgical complications during removal2. Wireless implantable devices provide greater operational freedom but include issues such as limited detection range, poor degradation and difficulty in size reduction in the human body3. Here we present an injectable, bioresorbable and wireless metastructured hydrogel (metagel) sensor for ultrasonic monitoring of intracranial signals. The metagel sensors are cubes 2 × 2 × 2 mm3 in size that encompass both biodegradable and stimulus-responsive hydrogels and periodically aligned air columns with a specific acoustic reflection spectrum. Implanted into intracranial space with a puncture needle, the metagel deforms in response to physiological environmental changes, causing peak frequency shifts of reflected ultrasound waves that can be wirelessly measured by an external ultrasound probe. The metagel sensor can independently detect intracranial pressure, temperature, pH and flow rate, realize a detection depth of 10 cm and almost fully degrade within 18 weeks. Animal experiments on rats and pigs indicate promising multiparametric sensing performances on a par with conventional non-resorbable wired clinical benchmarks. A bioresorbable, wireless hydrogel (metagel) sensor, encompassing both biodegradable and stimulus-responsive hydrogels for ultrasonic monitoring of intracranial signals, was implanted into intracranial space with a puncture needle and deformed in response to physiological environmental changes.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"630 8015","pages":"84-90"},"PeriodicalIF":50.5000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-07334-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Direct and precise monitoring of intracranial physiology holds immense importance in delineating injuries, prognostication and averting disease1. Wired clinical instruments that use percutaneous leads are accurate but are susceptible to infection, patient mobility constraints and potential surgical complications during removal2. Wireless implantable devices provide greater operational freedom but include issues such as limited detection range, poor degradation and difficulty in size reduction in the human body3. Here we present an injectable, bioresorbable and wireless metastructured hydrogel (metagel) sensor for ultrasonic monitoring of intracranial signals. The metagel sensors are cubes 2 × 2 × 2 mm3 in size that encompass both biodegradable and stimulus-responsive hydrogels and periodically aligned air columns with a specific acoustic reflection spectrum. Implanted into intracranial space with a puncture needle, the metagel deforms in response to physiological environmental changes, causing peak frequency shifts of reflected ultrasound waves that can be wirelessly measured by an external ultrasound probe. The metagel sensor can independently detect intracranial pressure, temperature, pH and flow rate, realize a detection depth of 10 cm and almost fully degrade within 18 weeks. Animal experiments on rats and pigs indicate promising multiparametric sensing performances on a par with conventional non-resorbable wired clinical benchmarks. A bioresorbable, wireless hydrogel (metagel) sensor, encompassing both biodegradable and stimulus-responsive hydrogels for ultrasonic monitoring of intracranial signals, was implanted into intracranial space with a puncture needle and deformed in response to physiological environmental changes.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于无线监测颅内信号的注射式超声波传感器。
对颅内生理学进行直接而精确的监测,对于确定损伤、预后和避免疾病具有极其重要的意义1。使用经皮导线的有线临床仪器虽然精确,但容易受到感染、病人行动不便以及移除时可能出现手术并发症等问题的影响2。无线植入式设备提供了更大的操作自由度,但也存在探测范围有限、降解性能差以及难以缩小人体尺寸等问题3。在此,我们介绍一种可注射、可生物吸收和无线的元结构水凝胶(metagel)传感器,用于超声波监测颅内信号。元凝胶传感器是 2 × 2 × 2 mm3 大小的立方体,包含生物可降解和刺激响应水凝胶以及周期性排列的空气柱,具有特定的声反射频谱。用穿刺针植入颅内后,metagel 会随着生理环境的变化而变形,从而引起反射超声波的峰值频率偏移,外部超声探头可通过无线方式测量这些频率偏移。metagel 传感器可独立检测颅内压、温度、pH 值和流速,检测深度可达 10 厘米,并可在 18 周内几乎完全降解。在大鼠和猪身上进行的动物实验表明,多参数传感性能与传统的非可吸收有线临床基准相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
'CAR T cells': a festive parody song from the Nature Podcast The Nature Podcast highlights of 2024 ‘Ozempic, you’re able’: a festive parody song from the Nature Podcast Digital origins for ancient digits Author Correction: π-HuB: the proteomic navigator of the human body
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1