Xinrui Zhang, Tong Xing, Lin Zhang, Liang Zhao, Feng Gao
{"title":"Hypoxia-mediated programmed cell death is involved in the formation of wooden breast in broilers.","authors":"Xinrui Zhang, Tong Xing, Lin Zhang, Liang Zhao, Feng Gao","doi":"10.1186/s40104-024-01036-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Wooden breast (WB) myopathy is a common myopathy found in commercial broiler chickens worldwide. Histological examination has revealed that WB myopathy is accompanied by damage to the pectoralis major (PM) muscle. However, the underlying mechanisms responsible for the formation of WB in broilers have not been fully elucidated. This study aimed to investigate the potential role of hypoxia-mediated programmed cell death (PCD) in the formation of WB myopathy.</p><p><strong>Results: </strong>Histological examination and biochemical analysis were performed on the PM muscle of the control (CON) and WB groups. A significantly increased thickness of the breast muscle in the top, middle, and bottom portions (P<0.01) was found along with pathological structure damage of myofibers in the WB group. The number of capillaries per fiber in PM muscle, and the levels of pO<sub>2</sub> and sO<sub>2</sub> in the blood, were significantly decreased (P < 0.01), while the levels of pCO<sub>2</sub> and TCO<sub>2</sub> in the blood were significantly increased (P < 0.05), suggesting hypoxic conditions in the PM muscle of the WB group. We further evaluated the PCD-related pathways including autophagy, apoptosis, and necroptosis to understand the consequence response to enhanced hypoxic conditions in the PM muscle of birds with WB. The ratio of LC3 II to LC3 I, and the autophagy-related factors HIF-1α, BNIP3, Beclin1, AMPKα, and ULK1 at the mRNA and protein levels, were all significantly upregulated (P < 0.05), showing that autophagy occurred in the PM muscle of the WB group. The apoptotic index, as well as the expressions of Bax, Cytc, caspase 9, and caspase 3, were significantly increased (P < 0.05), whereas Bcl-2 was significantly decreased (P < 0.05) in the WB-affected PM muscle, indicating the occurrence of apoptosis mediated by the mitochondrial pathway. Additionally, the expressions of necroptosis-related factors RIP1, RIP3, and MLKL, as well as NF-κB and the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, were all significantly enhanced (P < 0.05) in the WB-affected PM muscle.</p><p><strong>Conclusions: </strong>The WB myopathy reduces blood supply and induces hypoxia in the PM muscle, which is closely related to the occurrence of PCD including apoptosis, autophagy, and necroptosis within myofibers, and finally leads to abnormal muscle damage and the development of WB in broilers.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"77"},"PeriodicalIF":6.3000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11155070/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1186/s40104-024-01036-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Wooden breast (WB) myopathy is a common myopathy found in commercial broiler chickens worldwide. Histological examination has revealed that WB myopathy is accompanied by damage to the pectoralis major (PM) muscle. However, the underlying mechanisms responsible for the formation of WB in broilers have not been fully elucidated. This study aimed to investigate the potential role of hypoxia-mediated programmed cell death (PCD) in the formation of WB myopathy.
Results: Histological examination and biochemical analysis were performed on the PM muscle of the control (CON) and WB groups. A significantly increased thickness of the breast muscle in the top, middle, and bottom portions (P<0.01) was found along with pathological structure damage of myofibers in the WB group. The number of capillaries per fiber in PM muscle, and the levels of pO2 and sO2 in the blood, were significantly decreased (P < 0.01), while the levels of pCO2 and TCO2 in the blood were significantly increased (P < 0.05), suggesting hypoxic conditions in the PM muscle of the WB group. We further evaluated the PCD-related pathways including autophagy, apoptosis, and necroptosis to understand the consequence response to enhanced hypoxic conditions in the PM muscle of birds with WB. The ratio of LC3 II to LC3 I, and the autophagy-related factors HIF-1α, BNIP3, Beclin1, AMPKα, and ULK1 at the mRNA and protein levels, were all significantly upregulated (P < 0.05), showing that autophagy occurred in the PM muscle of the WB group. The apoptotic index, as well as the expressions of Bax, Cytc, caspase 9, and caspase 3, were significantly increased (P < 0.05), whereas Bcl-2 was significantly decreased (P < 0.05) in the WB-affected PM muscle, indicating the occurrence of apoptosis mediated by the mitochondrial pathway. Additionally, the expressions of necroptosis-related factors RIP1, RIP3, and MLKL, as well as NF-κB and the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, were all significantly enhanced (P < 0.05) in the WB-affected PM muscle.
Conclusions: The WB myopathy reduces blood supply and induces hypoxia in the PM muscle, which is closely related to the occurrence of PCD including apoptosis, autophagy, and necroptosis within myofibers, and finally leads to abnormal muscle damage and the development of WB in broilers.