Supervised Contrastive Learning Framework and Hardware Implementation of Learned ResNet for Real-time Respiratory Sound Classification.

Jinhai Hu, Cong Sheng Leow, Shuailin Tao, Wang Ling Goh, Yuan Gao
{"title":"Supervised Contrastive Learning Framework and Hardware Implementation of Learned ResNet for Real-time Respiratory Sound Classification.","authors":"Jinhai Hu, Cong Sheng Leow, Shuailin Tao, Wang Ling Goh, Yuan Gao","doi":"10.1109/TBCAS.2024.3409584","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a supervised contrastive learning (SCL) framework for respiratory sound classification and the hardware implementation of learned ResNet on field programmable gate array (FPGA) for real-time monitoring. At the algorithmic level, multiple techniques such as features augmentation and MixUp are combined holistically to mitigate the impact of data scarcity and imbalanced classes in the training dataset. Bayesian optimization further enhances the classification accuracy through parameter tuning in pre-processing and SCL. The proposed framework achieves 0.8725 total score (including runtime score) on a ResNet-18 model in both event and record multi-class classification tasks using the SJTU Paediatric Respiratory Sound Database (SPRSound). In addition, algorithm-hardware co-optimizations including Quantization-Aware Training (QAT), merge of network layers, optimization of memory size and number of parallel threads are performed for hardware implementation on FPGA. This approach reduces 40% model size and 70% computation latency. The learned ResNet is implemented on a Xilinx Zynq ZCU102 FPGA with 16ms latency and less than 2% inference score degradation compared to the software model.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3409584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a supervised contrastive learning (SCL) framework for respiratory sound classification and the hardware implementation of learned ResNet on field programmable gate array (FPGA) for real-time monitoring. At the algorithmic level, multiple techniques such as features augmentation and MixUp are combined holistically to mitigate the impact of data scarcity and imbalanced classes in the training dataset. Bayesian optimization further enhances the classification accuracy through parameter tuning in pre-processing and SCL. The proposed framework achieves 0.8725 total score (including runtime score) on a ResNet-18 model in both event and record multi-class classification tasks using the SJTU Paediatric Respiratory Sound Database (SPRSound). In addition, algorithm-hardware co-optimizations including Quantization-Aware Training (QAT), merge of network layers, optimization of memory size and number of parallel threads are performed for hardware implementation on FPGA. This approach reduces 40% model size and 70% computation latency. The learned ResNet is implemented on a Xilinx Zynq ZCU102 FPGA with 16ms latency and less than 2% inference score degradation compared to the software model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于实时呼吸声分类的有监督对比学习框架和学习到的 ResNet 硬件实现。
本文介绍了用于呼吸声音分类的有监督对比学习(SCL)框架,以及用于实时监测的现场可编程门阵列(FPGA)上学习到的 ResNet 的硬件实现。在算法层面,多种技术(如特征增强和 MixUp)被全面结合起来,以减轻数据稀缺和训练数据集中的不平衡类别的影响。贝叶斯优化技术通过调整预处理和 SCL 的参数,进一步提高了分类的准确性。在使用上海交通大学儿科呼吸声数据库(SPRSound)进行事件和记录多类分类任务时,所提出的框架在 ResNet-18 模型上取得了 0.8725 的总分(包括运行时得分)。此外,为了在 FPGA 上进行硬件实现,还对算法和硬件进行了共同优化,包括量化感知训练(QAT)、网络层合并、内存大小和并行线程数量的优化。这种方法可减少 40% 的模型大小和 70% 的计算延迟。学习到的 ResNet 在 Xilinx Zynq ZCU102 FPGA 上实现,与软件模型相比,延迟时间仅为 16ms,推理得分下降不到 2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Energy-Efficient and Artifact-Resilient ASIC for Simultaneous Neural Recording and Optogenetic Stimulation. Integrated Real-Time CMOS Luminescence Sensing and Impedance Spectroscopy in Droplet Microfluidics. Dynamic sub-array selection-based energy-efficient localization and tracking method to power implanted medical devices in scattering heterogenous media employing ultrasound. A Reconfigurable Bidirectional Wireless Power and Full-Duplex Data Transceiver IC for Wearable Biomedical Applications. An Ultrasonic Transceiver for Non-Invasive Intracranial Pressure Sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1