{"title":"REPFS: Reliability-Ensured Personalized Function Scheduling in Sustainable Serverless Edge Computing","authors":"Kun Cao;Jian Weng","doi":"10.1109/TSUSC.2023.3336691","DOIUrl":null,"url":null,"abstract":"In recent years, serverless edge computing has been widely employed in the deployments of Internet-of-things (IoT) applications. Despite considerable research efforts in this field, existing works fail to jointly consider essential factors such as energy, reliability, personalized user requirements, and stochastic application executions. This oversight results in an inefficient utilization of computation and communication resources within serverless edge computing networks, subsequently diminishing the profit of service providers and degrading the quality-of-experience (QoE) of end users. In this paper, we explore the problem of reliability-ensured personalized function scheduling (REPFS) to jointly optimize the profit of service providers and the holistic QoE of end users in sustainable serverless edge computing. A personality-driven user QoE prediction method is first designed to accurately estimate the QoE of individual end users with differentiated personality types. Afterward, a deterministic function scheduling policy is developed on the problem-specific augmented non-dominated sorting genetic algorithm II (PSA-NSGA-II). Given the inherent uncertainty of application executions, a stochastic function scheduling strategy that can be easily parallelized for modern multicore scheduler platforms is also devised to accelerate solution generation for stochastic applications. Experimental results show that our deterministic function scheduling policy achieves 15% performance enhancement compared with representative multiobjective evolutionary algorithms. Furthermore, our stochastic function scheduling strategy promotes the service profit by 78% and the holistic user QoE by 118% on average compared with the developed deterministic scheduling policy.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 3","pages":"494-511"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10334010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10334010/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, serverless edge computing has been widely employed in the deployments of Internet-of-things (IoT) applications. Despite considerable research efforts in this field, existing works fail to jointly consider essential factors such as energy, reliability, personalized user requirements, and stochastic application executions. This oversight results in an inefficient utilization of computation and communication resources within serverless edge computing networks, subsequently diminishing the profit of service providers and degrading the quality-of-experience (QoE) of end users. In this paper, we explore the problem of reliability-ensured personalized function scheduling (REPFS) to jointly optimize the profit of service providers and the holistic QoE of end users in sustainable serverless edge computing. A personality-driven user QoE prediction method is first designed to accurately estimate the QoE of individual end users with differentiated personality types. Afterward, a deterministic function scheduling policy is developed on the problem-specific augmented non-dominated sorting genetic algorithm II (PSA-NSGA-II). Given the inherent uncertainty of application executions, a stochastic function scheduling strategy that can be easily parallelized for modern multicore scheduler platforms is also devised to accelerate solution generation for stochastic applications. Experimental results show that our deterministic function scheduling policy achieves 15% performance enhancement compared with representative multiobjective evolutionary algorithms. Furthermore, our stochastic function scheduling strategy promotes the service profit by 78% and the holistic user QoE by 118% on average compared with the developed deterministic scheduling policy.