Modeling of contact resistivity and simplification of 3D homogenization strategy for the H formulation

Sijian Wang, H. Yong, Youhe Zhou
{"title":"Modeling of contact resistivity and simplification of 3D homogenization strategy for the H formulation","authors":"Sijian Wang, H. Yong, Youhe Zhou","doi":"10.1088/1361-6668/ad541f","DOIUrl":null,"url":null,"abstract":"\n The finite element method (FEM) provides a powerful support for the calculations of superconducting electromagnetic responses. It enables the analysis of large-scale high-temperature superconducting (HTS) systems by the popular H formulation. Nonetheless, modeling of contact resistivity in three-dimensional (3D) FEM is still a matter of interest. The difficulty stems from the large aspect ratio of the contact layer in numerical modeling. Nowadays, an available solution is to model the contact layer with zero thickness but requires the discontinuity conditions of the magnetic field. In this paper, the energy variational method is utilized to incorporate the contribution of contact resistivity into the H formulation. From the perspective of energy transfer, the contact resistivity is related to the energy dissipation of the radial current flowing through the contact interface. In terms of applications, this method can be employed to calculate the charging delay of no-insulation (NI) coils and the current sharing behaviors of CORC cables. One advantage of this model is that the magnetic field is continuous and hence can be easily implemented in FEM. Additionally, it requires fewer degrees of freedom and hence presents advantages in computational efficiency. Moreover, this method can be employed to simplify the 3D H homogeneous model for insulated coils. The above discussions demonstrate that the proposed model is a promising tool for the modeling of contact resistivity.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":"3 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6668/ad541f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The finite element method (FEM) provides a powerful support for the calculations of superconducting electromagnetic responses. It enables the analysis of large-scale high-temperature superconducting (HTS) systems by the popular H formulation. Nonetheless, modeling of contact resistivity in three-dimensional (3D) FEM is still a matter of interest. The difficulty stems from the large aspect ratio of the contact layer in numerical modeling. Nowadays, an available solution is to model the contact layer with zero thickness but requires the discontinuity conditions of the magnetic field. In this paper, the energy variational method is utilized to incorporate the contribution of contact resistivity into the H formulation. From the perspective of energy transfer, the contact resistivity is related to the energy dissipation of the radial current flowing through the contact interface. In terms of applications, this method can be employed to calculate the charging delay of no-insulation (NI) coils and the current sharing behaviors of CORC cables. One advantage of this model is that the magnetic field is continuous and hence can be easily implemented in FEM. Additionally, it requires fewer degrees of freedom and hence presents advantages in computational efficiency. Moreover, this method can be employed to simplify the 3D H homogeneous model for insulated coils. The above discussions demonstrate that the proposed model is a promising tool for the modeling of contact resistivity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
接触电阻率建模和简化 H 公式的三维均质策略
有限元法(FEM)为超导电磁响应的计算提供了强大的支持。它可以通过流行的 H 公式分析大规模高温超导 (HTS) 系统。然而,在三维(3D)有限元中建立接触电阻率模型仍然是一个令人感兴趣的问题。困难在于数值建模中接触层的高宽比较大。目前,一种可用的解决方案是建立零厚度接触层模型,但需要磁场的不连续条件。本文利用能量变分法将接触电阻率的贡献纳入 H 公式中。从能量传递的角度来看,接触电阻率与流经接触界面的径向电流的能量耗散有关。在应用方面,这种方法可用于计算无绝缘(NI)线圈的充电延迟和 CORC 电缆的分流行为。该模型的一个优点是磁场是连续的,因此可以在有限元模型中轻松实现。此外,它所需的自由度较少,因此在计算效率方面具有优势。此外,这种方法还可用于简化绝缘线圈的三维 H 均质模型。上述讨论表明,所提出的模型是一种很有前途的接触电阻率建模工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced mechanical strength and texture of (Ba,K)Fe2As2 Cu/Ag composite sheathed tapes with Nb barrier layer Natural width of the superconducting transition in epitaxial TiN films Kagome materials AV3Sb5 (A = K,Rb,Cs): pairing symmetry and pressure-tuning studies Stable implicit numerical algorithm of time-dependent Ginzburg–Landau theory coupled with thermal effect for vortex behaviors in hybrid superconductor systems From weak to strong-coupling superconductivity tuned by substrate in TiN films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1