Enhancing the efficiency of hemp fiber dyeing with natural dyes: Indigo and lac

IF 0.7 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of metals, materials and minerals Pub Date : 2024-06-04 DOI:10.55713/jmmm.v34i2.1873
Jadsadaporn Chouytan, Rajapol Thirawat, Dhea Khotradha, Tanawat Ruangteprat, Ing-orn Sittitanadol, S. Udon
{"title":"Enhancing the efficiency of hemp fiber dyeing with natural dyes: Indigo and lac","authors":"Jadsadaporn Chouytan, Rajapol Thirawat, Dhea Khotradha, Tanawat Ruangteprat, Ing-orn Sittitanadol, S. Udon","doi":"10.55713/jmmm.v34i2.1873","DOIUrl":null,"url":null,"abstract":"Hemp fibers dyed with natural dyes are environmentally sustainable, but it is typically difficult to achieve an intense shade and washing durability. In this study, mercerization and cationization using polyelectrolyte, Poly-diallyldimethylammonium chloride (polyDADMAC), were chosen to enhance the dyeing efficiency and mechanical properties. Indigo and lac were chosen as natural dyes due to their widespread use. SEM demonstrated that untreated fibers contained the non-cellulose boundary layer on the surfaces, but after mercerization, the surfaces were smoother, making them suitable for absorbing natural dyes. In agreement with the FT-IR, the spectra of non-cellulose disappeared after mercerizing. Following cationization, the FT-IR spectra confirmed the consequences of using poly-DADMAC. Tensile testing demonstrated that mercerized hemp yarns were 34.1% stronger compared to untreated hemp yarns due to the decrease in non-cellulose content and that the intermolecular attraction of cellulose was not disturbed. The color strength and fastness properties were described by the K/S value. Mercerization considerably affected the K/S of indigo dyeing, while cationization affected lac dyeing significantly. Besides that, both treatments improved fastness properties as well.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v34i2.1873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hemp fibers dyed with natural dyes are environmentally sustainable, but it is typically difficult to achieve an intense shade and washing durability. In this study, mercerization and cationization using polyelectrolyte, Poly-diallyldimethylammonium chloride (polyDADMAC), were chosen to enhance the dyeing efficiency and mechanical properties. Indigo and lac were chosen as natural dyes due to their widespread use. SEM demonstrated that untreated fibers contained the non-cellulose boundary layer on the surfaces, but after mercerization, the surfaces were smoother, making them suitable for absorbing natural dyes. In agreement with the FT-IR, the spectra of non-cellulose disappeared after mercerizing. Following cationization, the FT-IR spectra confirmed the consequences of using poly-DADMAC. Tensile testing demonstrated that mercerized hemp yarns were 34.1% stronger compared to untreated hemp yarns due to the decrease in non-cellulose content and that the intermolecular attraction of cellulose was not disturbed. The color strength and fastness properties were described by the K/S value. Mercerization considerably affected the K/S of indigo dyeing, while cationization affected lac dyeing significantly. Besides that, both treatments improved fastness properties as well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用天然染料提高麻纤维染色效率:靛蓝和漆
用天然染料染色的麻纤维具有环境可持续性,但通常很难获得浓艳的色泽和耐洗性。本研究选用丝光和阳离子化聚合电解质聚二烯丙基二甲基氯化铵(polyDADMAC)来提高染色效率和机械性能。由于靛蓝和漆广泛使用,因此选择了它们作为天然染料。扫描电子显微镜显示,未经处理的纤维表面含有非纤维素边界层,但丝光处理后,表面更加光滑,适合吸收天然染料。与傅立叶变换红外光谱一致,丝光处理后非纤维素的光谱消失了。阳离子化后,傅立叶变换红外光谱证实了使用聚-DADMAC 的结果。拉伸测试表明,丝光处理后的麻纱比未经处理的麻纱强力提高了 34.1%,原因是非纤维素含量减少,而且纤维素的分子间吸引力没有受到干扰。色牢度和牢度特性用 K/S 值来描述。丝光处理大大影响了靛蓝染色的 K/S,而阳离子化则明显影响了漆树染色。此外,这两种处理方法还改善了牢度特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of metals, materials and minerals
Journal of metals, materials and minerals MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
11.10%
发文量
0
期刊介绍: Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.
期刊最新文献
The effect of printing parameters on the properties of 17-4 PH stainless steel fabricated by material extrusion additive manufacturing Realizing fast plating/stripping of high-performance Zn metal anode with a low Zn loading The mechanochemistry of lanthanum dihydride (LaH\(_{2}\)) with hydrogen (H\(_{2}\)) using the ball-mill process and the effect of oxidation on the resulting products Natural wound dressing films prepared from acetylated starch/κ-carrageenan blend incorporated with mandelic acid Influence of annealing times for W films on the structure and electrochromic properties of anodized WO\(_{3}\) films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1