Pub Date : 2023-12-19DOI: 10.55713/jmmm.v34i1.1896
S. A. Behera, Ali Amanat, P. Ganga, Raju Achary
Poly (vinylidene fluoride) (PVDF) is the first-choice ferroelectric support or membrane material. The lanthanum strontium manganite (LSMO) is a well-known electrode material in the class of the solid oxide fuel cell (SOFC) materials. A set of four polymer composites PVDF-LSMO-PANI(5.0 wt%) with different amount of silver doping were fabricated with the silver nitrate and reducing agent. The characterization of these four novel PVDF based composites were characterized by the XRD, FTIR, SEM, UV-Visible DRS. The present communication highlights: (I) the effect of PANI in the PVDF-LSMO-PANI (PLP) composites towards the photocatalytic degradation of ciprofloxacin drug. (II) the effect of Ag doping in the Ag-PVDF-LSMO-PANI (Ag-PLP) composites towards the photocatalytic degradation of ciprofloxacin drug. It is observed that the incorporation of PANI in PVDF-LSMO and Ag in PVDF-LSMO-PANI polymer ceramic composites showed enhanced photocatalytic degradation of ciprofloxacin in the irradiation of visible radiation. The plausible separation of photo-generated e- hole pairs (e- and h+) carried on by charge migration kind of mechanism is being studied here to understand the improved photocatalytic activity of Ag-PVDF-LSMO-PANI composites.
聚偏二氟乙烯(PVDF)是首选的铁电支撑材料或膜材料。镧锶锰矿(LSMO)是固体氧化物燃料电池(SOFC)材料中一种著名的电极材料。研究人员利用硝酸银和还原剂制备了四种不同银掺杂量的聚合物复合材料 PVDF-LSMO-PANI(5.0 wt%)。对这四种新型 PVDF 基复合材料的表征采用了 XRD、傅立叶变换红外光谱、扫描电镜和紫外-可见 DRS。本通讯重点介绍了:(I)PVDF-LSMO-PANI(PLP)复合材料中的 PANI 对环丙沙星药物光催化降解的影响。(II)Ag-PVDF-LSMO-PANI(Ag-PLP)复合材料中掺入 Ag 对光催化降解环丙沙星药物的影响。研究发现,在 PVDF-LSMO 中掺入 PANI 和在 PVDF-LSMO-PANI 聚合物陶瓷复合材料中掺入 Ag 后,在可见光辐射照射下,环丙沙星的光催化降解能力增强。本文研究了电荷迁移机制下光生成的电子-空穴对(e-和 h+)的分离,以了解 Ag-PVDF-LSMO-PANI 复合材料光催化活性的提高。
{"title":"Photocatalytic degradation of ciprofloxacin drug utilizing novel PVDF/polyaniline/ lanthanum strontium manganate@Ag composites","authors":"S. A. Behera, Ali Amanat, P. Ganga, Raju Achary","doi":"10.55713/jmmm.v34i1.1896","DOIUrl":"https://doi.org/10.55713/jmmm.v34i1.1896","url":null,"abstract":"Poly (vinylidene fluoride) (PVDF) is the first-choice ferroelectric support or membrane material. The lanthanum strontium manganite (LSMO) is a well-known electrode material in the class of the solid oxide fuel cell (SOFC) materials. A set of four polymer composites PVDF-LSMO-PANI(5.0 wt%) with different amount of silver doping were fabricated with the silver nitrate and reducing agent. The characterization of these four novel PVDF based composites were characterized by the XRD, FTIR, SEM, UV-Visible DRS. The present communication highlights: (I) the effect of PANI in the PVDF-LSMO-PANI (PLP) composites towards the photocatalytic degradation of ciprofloxacin drug. (II) the effect of Ag doping in the Ag-PVDF-LSMO-PANI (Ag-PLP) composites towards the photocatalytic degradation of ciprofloxacin drug. It is observed that the incorporation of PANI in PVDF-LSMO and Ag in PVDF-LSMO-PANI polymer ceramic composites showed enhanced photocatalytic degradation of ciprofloxacin in the irradiation of visible radiation. The plausible separation of photo-generated e- hole pairs (e- and h+) carried on by charge migration kind of mechanism is being studied here to understand the improved photocatalytic activity of Ag-PVDF-LSMO-PANI composites.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":" 5","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138959847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-19DOI: 10.55713/jmmm.v33i4.1774
Baljit Singh, A. Mohanty, Amit Kumar Srivastava, Ajay Singh
The combined effect of nano-reinforcements on the mechanical performance of nanocomposites, which are a novel class of epoxy matrix hybrid nanocomposites containing multiwall carbon nanotubes (MWCNT), graphene, and nanodiamonds (NDs), is drawing substantial attention from many research communities. The discussion concentrates on the dispersion techniques adopted for the preparation of epoxy composites containing different types of nanoparticles (3-D fillers, nanofibers, nanotubes, and plate-like fillers). This review paper covers the electrical, thermal, and mechanical properties of carbon nanotubes (CNTs), graphene, and nanodiamond-reinforced epoxy nanocomposites and correlates them with the topographical features, morphology, weight fraction, dispersion state, and surface functionalization of CNTs, graphene, and nanodiamond. This review paper also summarises recent developments in the dispersion method of different carbon nanoparticles in epoxy matrix.
{"title":"Dispersion mechanism of nanoparticles and its role on mechanical, thermal and electrical properties of epoxy nanocomposites - A Review","authors":"Baljit Singh, A. Mohanty, Amit Kumar Srivastava, Ajay Singh","doi":"10.55713/jmmm.v33i4.1774","DOIUrl":"https://doi.org/10.55713/jmmm.v33i4.1774","url":null,"abstract":"The combined effect of nano-reinforcements on the mechanical performance of nanocomposites, which are a novel class of epoxy matrix hybrid nanocomposites containing multiwall carbon nanotubes (MWCNT), graphene, and nanodiamonds (NDs), is drawing substantial attention from many research communities. The discussion concentrates on the dispersion techniques adopted for the preparation of epoxy composites containing different types of nanoparticles (3-D fillers, nanofibers, nanotubes, and plate-like fillers). This review paper covers the electrical, thermal, and mechanical properties of carbon nanotubes (CNTs), graphene, and nanodiamond-reinforced epoxy nanocomposites and correlates them with the topographical features, morphology, weight fraction, dispersion state, and surface functionalization of CNTs, graphene, and nanodiamond. This review paper also summarises recent developments in the dispersion method of different carbon nanoparticles in epoxy matrix.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":" 2","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138962989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-15DOI: 10.55713/jmmm.v33i4.1830
Tannachart Wantang, Manop Pipathattakul, F. Wiwatwongwana
This research aimed to evaluate the bulletproof capabilities of hemp fabrics and optimize the design factors for effective ballistic vests. Three main aspects were investigated: enhancing toughness with polyurethane-coated hemp fabrics, determining optimal placement of fabric-reinforced hemp epoxy composites in various configurations, and identifying the optimal number of fabric layers for performance against 9 mm and .40 S&W bullets. Penetration depth was measured in ballistic gelatin to analyze the results. The study showed strong statistical correlations between factor variables and penetration depth shifts. The most effective strategies included polyurethane-coated hemp on all layers and increased layering. The ammunition of 9 mm bullets exhibited the least penetration depth when tested against the sandwich-reinforced configuration. In contrast, the larger .40 S&W bullets demonstrated that the frontal arrangement yielded the minimum penetration depth. Notably, 9 mm bullets penetrated 1.25 times deeper than .40 S&W bullets. These findings emphasize hemp fabric's potential for reliable ballistic vests. Utilizing polyurethane-coated hemp fabric in epoxy composites within a sandwich reinforcement of at least 212 layers is recommended to stop 9 mm bullets effectively. The research contributes valuable insights to sustainable ballistic vest development, utilizing natural materials with exceptional bullet protection capabilities.
{"title":"Sustainable innovation in ballistic vest design: Exploration of polyurethane-coated hemp fabrics and reinforced sandwich epoxy composites against 9 mm and .40 S&W bullets","authors":"Tannachart Wantang, Manop Pipathattakul, F. Wiwatwongwana","doi":"10.55713/jmmm.v33i4.1830","DOIUrl":"https://doi.org/10.55713/jmmm.v33i4.1830","url":null,"abstract":"This research aimed to evaluate the bulletproof capabilities of hemp fabrics and optimize the design factors for effective ballistic vests. Three main aspects were investigated: enhancing toughness with polyurethane-coated hemp fabrics, determining optimal placement of fabric-reinforced hemp epoxy composites in various configurations, and identifying the optimal number of fabric layers for performance against 9 mm and .40 S&W bullets. Penetration depth was measured in ballistic gelatin to analyze the results. The study showed strong statistical correlations between factor variables and penetration depth shifts. The most effective strategies included polyurethane-coated hemp on all layers and increased layering. The ammunition of 9 mm bullets exhibited the least penetration depth when tested against the sandwich-reinforced configuration. In contrast, the larger .40 S&W bullets demonstrated that the frontal arrangement yielded the minimum penetration depth. Notably, 9 mm bullets penetrated 1.25 times deeper than .40 S&W bullets. These findings emphasize hemp fabric's potential for reliable ballistic vests. Utilizing polyurethane-coated hemp fabric in epoxy composites within a sandwich reinforcement of at least 212 layers is recommended to stop 9 mm bullets effectively. The research contributes valuable insights to sustainable ballistic vest development, utilizing natural materials with exceptional bullet protection capabilities.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"17 35","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138970664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-13DOI: 10.55713/jmmm.v33i4.1786
S. Wongrerkdee, S. Choopun, P. Pimpang
This study aimed to investigate the effects of a corrosive environment on both the electrical and the water resistance properties of conductive paste based on gold/silver composites. The conductive paste was prepared by incorporating silver and gold powders, polyvinyl acetate, polyvinyl chloride as adhesive components, and methyl isobutyl ketone as a diluent. The gold/silver composite powder was prepared with different mass ratios of gold and silver. The paste was coated on a substrate and heated at 80℃ to form the conductive paste film. Characterizations of conductive paste were performed by using FT-IR spectroscopy, electrometry, cyclic voltammetry, and contact angle measurements. Thus, the conductive paste films were tested under two conditions: the absence and the presence of exposure to nitric acid vapor. The results showed that the resistance and the contact angle of the conductive paste were more stable after exposure to nitric acid vapor, particularly in samples of higher gold content. Furthermore, the electrochemical behavior of the conductive paste with gold content remains unchanged after exposure to nitric acid vapor. Results suggest that gold has properties in terms of stability, resistance to oxidation, and maintaining surface characteristics, making it a preferable component for applications requiring resistance to corrosive environments.
{"title":"Electrical and water resistance properties of conductive paste based on gold/silver composites","authors":"S. Wongrerkdee, S. Choopun, P. Pimpang","doi":"10.55713/jmmm.v33i4.1786","DOIUrl":"https://doi.org/10.55713/jmmm.v33i4.1786","url":null,"abstract":"This study aimed to investigate the effects of a corrosive environment on both the electrical and the water resistance properties of conductive paste based on gold/silver composites. The conductive paste was prepared by incorporating silver and gold powders, polyvinyl acetate, polyvinyl chloride as adhesive components, and methyl isobutyl ketone as a diluent. The gold/silver composite powder was prepared with different mass ratios of gold and silver. The paste was coated on a substrate and heated at 80℃ to form the conductive paste film. Characterizations of conductive paste were performed by using FT-IR spectroscopy, electrometry, cyclic voltammetry, and contact angle measurements. Thus, the conductive paste films were tested under two conditions: the absence and the presence of exposure to nitric acid vapor. The results showed that the resistance and the contact angle of the conductive paste were more stable after exposure to nitric acid vapor, particularly in samples of higher gold content. Furthermore, the electrochemical behavior of the conductive paste with gold content remains unchanged after exposure to nitric acid vapor. Results suggest that gold has properties in terms of stability, resistance to oxidation, and maintaining surface characteristics, making it a preferable component for applications requiring resistance to corrosive environments.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"2 6","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138976437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-13DOI: 10.55713/jmmm.v33i4.1806
B. Zhumadilov, A. Kenzhegulov, Renata Nemkayeva, G. Partizan, Ye. Yerlanuly, Maratbek Gadbullin
This work presents a relatively new method for the synthesis of carbon nanowalls (CNWs) based on oxy-acetylene torch as a function of deposition time. The morphological and structural properties of the obtained CNW films were studied by scanning electron microscopy and Raman spectroscopy. Changes in the morphology and structural properties of the CNW films depending on the synthesis time were revealed. Shorter growth times lead to the formation of thinner CNW films with a dense labyrinth-like structure, while longer growth times lead to thicker CNW films with a petal-like structure. In addition, this study opens up the possibility of synthesizing CNWs on a production scale, since the proposed method is relatively environmentally friendly and efficient from an economical point of view.
{"title":"Synthesis of carbon nanowalls by oxy-acetylene torch method","authors":"B. Zhumadilov, A. Kenzhegulov, Renata Nemkayeva, G. Partizan, Ye. Yerlanuly, Maratbek Gadbullin","doi":"10.55713/jmmm.v33i4.1806","DOIUrl":"https://doi.org/10.55713/jmmm.v33i4.1806","url":null,"abstract":"This work presents a relatively new method for the synthesis of carbon nanowalls (CNWs) based on oxy-acetylene torch as a function of deposition time. The morphological and structural properties of the obtained CNW films were studied by scanning electron microscopy and Raman spectroscopy. Changes in the morphology and structural properties of the CNW films depending on the synthesis time were revealed. Shorter growth times lead to the formation of thinner CNW films with a dense labyrinth-like structure, while longer growth times lead to thicker CNW films with a petal-like structure. In addition, this study opens up the possibility of synthesizing CNWs on a production scale, since the proposed method is relatively environmentally friendly and efficient from an economical point of view.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"26 30","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139006491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-13DOI: 10.55713/jmmm.v33i4.1775
Arun Daya, Arputharaj SAMSON NESARAJ
Fuel cells use electrochemical processes to transform the chemical energy of a fuel into electrical energy, which is a key enabler for the shift to an H2-based economy. Because of their high energy conversion efficiency and low pollution emissions, fuel cells with polymer electrolyte membranes (PEMFCs) are regarded as being in frontline of commercialization for the transportation and automotive industries. However, there are two major hurdles to their future commercialization: cost and durability, which promote basic study and development of their components. In this article, we reviewed the materials, functional components, fabrication technologies and assembling characteristics related to PEMFCs. Platinum's significance as a catalyst in PEMFC applications stems from the fact that it beats all other catalysts in three critical parts: stability, selectivity, and activity. In order to create Pt rich surfaces of NPs, Pt metal is alloyed with d-block metals like Cu, Ni, Fe, and Co. PEMFC development is inextricably tied to the benefits and drawbacks of the Nafion membrane under various operating circumstances. Nafion membrane has some drawbacks, including poor performance at high temperatures (over 90℃), low conductivity under low humidification, and high cost. As a result, a variety of nanoscale additives are frequently added to Nafion nanocomposites to enhance the material's properties under fuel cell working conditions. Fiber composite based bipolar plates can deliver best performance. The assembly of PEMFC based on strap approach is being explored. The applications of PEMFC are also projected.
{"title":"Review of materials, functional components, fabrication technologies and assembling characteristics for polymer electrolyte membrane fuel cells (PEMFCs) – An update","authors":"Arun Daya, Arputharaj SAMSON NESARAJ","doi":"10.55713/jmmm.v33i4.1775","DOIUrl":"https://doi.org/10.55713/jmmm.v33i4.1775","url":null,"abstract":"Fuel cells use electrochemical processes to transform the chemical energy of a fuel into electrical energy, which is a key enabler for the shift to an H2-based economy. Because of their high energy conversion efficiency and low pollution emissions, fuel cells with polymer electrolyte membranes (PEMFCs) are regarded as being in frontline of commercialization for the transportation and automotive industries. However, there are two major hurdles to their future commercialization: cost and durability, which promote basic study and development of their components. In this article, we reviewed the materials, functional components, fabrication technologies and assembling characteristics related to PEMFCs. Platinum's significance as a catalyst in PEMFC applications stems from the fact that it beats all other catalysts in three critical parts: stability, selectivity, and activity. In order to create Pt rich surfaces of NPs, Pt metal is alloyed with d-block metals like Cu, Ni, Fe, and Co. PEMFC development is inextricably tied to the benefits and drawbacks of the Nafion membrane under various operating circumstances. Nafion membrane has some drawbacks, including poor performance at high temperatures (over 90℃), low conductivity under low humidification, and high cost. As a result, a variety of nanoscale additives are frequently added to Nafion nanocomposites to enhance the material's properties under fuel cell working conditions. Fiber composite based bipolar plates can deliver best performance. The assembly of PEMFC based on strap approach is being explored. The applications of PEMFC are also projected.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"135 34","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139004044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12DOI: 10.55713/jmmm.v33i4.1752
C. K. Shilpa, S. Jasira, V. P. Veena, K. M. Nissamudeen
The increased population and modern way of life have greatly depleted the effectiveness of traditional energy production methods. There is a strong demand for environmentally friendly and renewable alternatives to replace the old systems. Sustainable energy production systems have emerged as a vital replacement for the conventional use of fossil fuels. Among these, solid oxide fuel cells (SOFCs) play a significant role. Recently, researchers have developed electrolyte components for SOFCs using proton-conducting perovskites with excellent conductivity. This critical assessment presents a yearly overview of innovative strategies for utilizing doped strontium cerate perovskites in energy production systems, a novel approach. The importance of identifying dopants that can enhance conductivity and stability in strontium cerate composites is emphasized, creating a crucial element for high-performance energy systems. Through a comparative study, it's been found that rare earth elements with smaller ionic radii, such as thulium-doped strontium cerium zirconate in an additional composite form, can outperform the traditionally used ytterbium-doped strontium cerate composites in proton-conducting applications.
{"title":"Growth of proton conducting strontium cerate composites","authors":"C. K. Shilpa, S. Jasira, V. P. Veena, K. M. Nissamudeen","doi":"10.55713/jmmm.v33i4.1752","DOIUrl":"https://doi.org/10.55713/jmmm.v33i4.1752","url":null,"abstract":"The increased population and modern way of life have greatly depleted the effectiveness of traditional energy production methods. There is a strong demand for environmentally friendly and renewable alternatives to replace the old systems. Sustainable energy production systems have emerged as a vital replacement for the conventional use of fossil fuels. Among these, solid oxide fuel cells (SOFCs) play a significant role. Recently, researchers have developed electrolyte components for SOFCs using proton-conducting perovskites with excellent conductivity. This critical assessment presents a yearly overview of innovative strategies for utilizing doped strontium cerate perovskites in energy production systems, a novel approach. The importance of identifying dopants that can enhance conductivity and stability in strontium cerate composites is emphasized, creating a crucial element for high-performance energy systems. Through a comparative study, it's been found that rare earth elements with smaller ionic radii, such as thulium-doped strontium cerium zirconate in an additional composite form, can outperform the traditionally used ytterbium-doped strontium cerate composites in proton-conducting applications.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"10 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139009800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-06DOI: 10.55713/jmmm.v33i4.1624
Ativit Denprawat, Kittipong Sinwanasarp, P. Kidkhunthod, N. Laorodphan, W. Thiemsorn
Glass structure tailoring of alkali silicate glasses by addition of ZrO2 and Er2O3 is found to enhance the chemical durability of glasses. ZrO2 (x ranged between 5 mol% to 15 mol%) and Er2O3 (y ranged between 0.5 mol% to 1.5 mol%) were used to replace SiO2 and Na2O, respectively, in the glasses with the nominal composition of 10Li2O-(15-y)Na2O-10CaO-(65-x)SiO2-xZrO2-y Er2O3. The samples were prepared by conventional melt quenching technique. The structures of produced glasses were examined by X-ray absorption spectroscopy (XAS) and Raman spectroscopy. XAS spectra demonstrated that the oxidation numbers of Zr and Er ions were +4 and +3, respectively. The chemical environment around both cations was six-fold coordination. In addition, Raman spectra demonstrated that the Zr4+ ions formed the Q4(Zr) structure, which caused the reduction of non-bridging oxygen. In case of the Er3+ ions, the formation of the Si-O-Er bonds was explained from the Raman study. The chemical durability of glass was determined from Na+ ions leaching values. In pH 7 solution, the leached Na+ ions reduced from 25.67% to 21.43% and from 22.50% to 20.49% as a function of concentration of ZrO2 (x = 5 mol% to 15 mol%) and Er2O3 (y = 0.5 mol% to 1.5 mol%), respectively. As the results, the chemical durability of the ZrO2-containing and Er2O3-containing glasses were significantly improved due to charge compensated mechanism and enhancing network rigidity by increasing cation field strength. Moreover, the micro-hardness (580 HV to 837 HV) and density (2.54 g⸳cm-3 to 2.82 g⸳cm-3) also displayed an increased tendency with larger concentration of ZrO2 and Er2O3.
{"title":"Structure and chemical durability improvement of alkali silicate glass by zirconium dioxide and erbium oxide addition","authors":"Ativit Denprawat, Kittipong Sinwanasarp, P. Kidkhunthod, N. Laorodphan, W. Thiemsorn","doi":"10.55713/jmmm.v33i4.1624","DOIUrl":"https://doi.org/10.55713/jmmm.v33i4.1624","url":null,"abstract":"Glass structure tailoring of alkali silicate glasses by addition of ZrO2 and Er2O3 is found to enhance the chemical durability of glasses. ZrO2 (x ranged between 5 mol% to 15 mol%) and Er2O3 (y ranged between 0.5 mol% to 1.5 mol%) were used to replace SiO2 and Na2O, respectively, in the glasses with the nominal composition of 10Li2O-(15-y)Na2O-10CaO-(65-x)SiO2-xZrO2-y Er2O3. The samples were prepared by conventional melt quenching technique. The structures of produced glasses were examined by X-ray absorption spectroscopy (XAS) and Raman spectroscopy. XAS spectra demonstrated that the oxidation numbers of Zr and Er ions were +4 and +3, respectively. The chemical environment around both cations was six-fold coordination. In addition, Raman spectra demonstrated that the Zr4+ ions formed the Q4(Zr) structure, which caused the reduction of non-bridging oxygen. In case of the Er3+ ions, the formation of the Si-O-Er bonds was explained from the Raman study. The chemical durability of glass was determined from Na+ ions leaching values. In pH 7 solution, the leached Na+ ions reduced from 25.67% to 21.43% and from 22.50% to 20.49% as a function of concentration of ZrO2 (x = 5 mol% to 15 mol%) and Er2O3 (y = 0.5 mol% to 1.5 mol%), respectively. As the results, the chemical durability of the ZrO2-containing and Er2O3-containing glasses were significantly improved due to charge compensated mechanism and enhancing network rigidity by increasing cation field strength. Moreover, the micro-hardness (580 HV to 837 HV) and density (2.54 g⸳cm-3 to 2.82 g⸳cm-3) also displayed an increased tendency with larger concentration of ZrO2 and Er2O3.\u0000 ","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"13 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138597107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-06DOI: 10.55713/jmmm.v33i4.1791
Razan NADHIM SHAKER, Sami Mohammed, Y.A. Abdulsayed
As a supercapacitor active material, molybdenum disulfide (MoS2) layer offers good conductivity, large surface area, and electrochemical stability. In practice, however, its capacitance is low in comparison to other materials. This work synthesized MoS2-zirconium dioxide (ZrO2) composite in a simple, high-throughput way to test it as a supercapacitor active layer. During the tests, the composite shows a gravimetric capacitance of 500.0 F⸳g-1, while MoS2 and ZrO2 have capacitances of 265.12 and 152.43, respectively. The increase in capacitance of composite stems from the synergistic effect between ZrO2's pseudocapacitor behavior and MoS2's electric double layer capacitance (EDLC). Moreover, the composite has a discharge time of ~ 406 s at a current density of 1 A⸳g-1, which is much longer compared to MoS2 and ZrO2. The stability test of the composite also shows that it maintains 93% of its initial capacitance after 2000 charge/discharge cycles.
{"title":"Molybdenum disulfide-Zirconium dioxide composite with enhance supercapacitance performance","authors":"Razan NADHIM SHAKER, Sami Mohammed, Y.A. Abdulsayed","doi":"10.55713/jmmm.v33i4.1791","DOIUrl":"https://doi.org/10.55713/jmmm.v33i4.1791","url":null,"abstract":"As a supercapacitor active material, molybdenum disulfide (MoS2) layer offers good conductivity, large surface area, and electrochemical stability. In practice, however, its capacitance is low in comparison to other materials. This work synthesized MoS2-zirconium dioxide (ZrO2) composite in a simple, high-throughput way to test it as a supercapacitor active layer. During the tests, the composite shows a gravimetric capacitance of 500.0 F⸳g-1, while MoS2 and ZrO2 have capacitances of 265.12 and 152.43, respectively. The increase in capacitance of composite stems from the synergistic effect between ZrO2's pseudocapacitor behavior and MoS2's electric double layer capacitance (EDLC). Moreover, the composite has a discharge time of ~ 406 s at a current density of 1 A⸳g-1, which is much longer compared to MoS2 and ZrO2. The stability test of the composite also shows that it maintains 93% of its initial capacitance after 2000 charge/discharge cycles.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"14 18","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138984278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-02DOI: 10.55713/jmmm.v33i4.1785
D. Bonardo, N. Darsono, S. Humaidi, A. Imaduddin, Noni Surtiana Silalahi
In this study, the influence of titanium oxide (TiO2) dopants and varying calcination processes on the thermoelectric properties of CuCrO2 was systematically explored. It was emphasized that these factors were not only affecting dislocation density but also exerting a profound influence on thermoelectric performance through the modulation of Seebeck coefficient and resistivity. The findings highlighted CrT-2, which incorporated TiO2 and underwent a two-time calcination process, as the top-performing sample in terms of power factor values, underscoring the significance of TiO2 as a dopant for enhancing thermoelectric efficiency. Conversely, Cr-4, exposed to four calcination cycles, exhibited slightly lower power factor values compared to Cr-2. Notably, CrT-4, despite containing the titanium dopant, showed the lowest power factor values, potentially due to intricate interactions between the dopant and the extended calcination process. These results underscore the intricate interplay between dopants, calcination processes, and thermoelectric performance in CuCrO2, necessitating precise optimization to achieve the desired material efficiency.
{"title":"Effect of calcination frequency on the thermoelectric properties of Ti doped CuCrO2 by solid state method","authors":"D. Bonardo, N. Darsono, S. Humaidi, A. Imaduddin, Noni Surtiana Silalahi","doi":"10.55713/jmmm.v33i4.1785","DOIUrl":"https://doi.org/10.55713/jmmm.v33i4.1785","url":null,"abstract":"In this study, the influence of titanium oxide (TiO2) dopants and varying calcination processes on the thermoelectric properties of CuCrO2 was systematically explored. It was emphasized that these factors were not only affecting dislocation density but also exerting a profound influence on thermoelectric performance through the modulation of Seebeck coefficient and resistivity. The findings highlighted CrT-2, which incorporated TiO2 and underwent a two-time calcination process, as the top-performing sample in terms of power factor values, underscoring the significance of TiO2 as a dopant for enhancing thermoelectric efficiency. Conversely, Cr-4, exposed to four calcination cycles, exhibited slightly lower power factor values compared to Cr-2. Notably, CrT-4, despite containing the titanium dopant, showed the lowest power factor values, potentially due to intricate interactions between the dopant and the extended calcination process. These results underscore the intricate interplay between dopants, calcination processes, and thermoelectric performance in CuCrO2, necessitating precise optimization to achieve the desired material efficiency.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"110 15","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138607724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}