Cyclization by metal-catalyzed hydrogen atom transfer/radical-polar crossover

IF 1.7 4区 化学 Q3 CHEMISTRY, ORGANIC Synlett Pub Date : 2024-06-03 DOI:10.1055/a-2337-2498
Hiroki Shigehisa
{"title":"Cyclization by metal-catalyzed hydrogen atom transfer/radical-polar crossover","authors":"Hiroki Shigehisa","doi":"10.1055/a-2337-2498","DOIUrl":null,"url":null,"abstract":"Catalytic transformation of alkenes via the metal-hydride hydrogen atom transfer (MHAT) mechanism has notably advanced synthetic organic chemistry. This review focuses on MHAT/radical-polar crossover (MHAT/RPC) conditions, offering a novel perspective on generating electrophilic intermediates and facilitating various intramolecular reactions. Upon using cobalt hydrides, the MHAT mechanism displayed exceptional chemoselectivity and functional group tolerance, making it invaluable for the construction of complex biologically relevant molecules under mild conditions. Recent developments have enhanced regioselectivity and expanded the scope of MHAT-type reactions, enabling the formation of cyclic molecules via hydroalkoxylation, hydroacyloxylation, and hydroamination. Notably, the addition of an oxidant to traditional MHAT systems enables the synthesis of rare cationic alkylcobalt(IV) complexes, bridging radical mechanisms to ionic reaction systems. This review culminates with examples of natural product syntheses and exploration of asymmetric intramolecular hydroalkoxylation, highlighting the ongoing challenges and opportunities for future research to achieve higher enantioselectivity. This comprehensive study revisits the historical evolution of the MHAT mechanism and provides the groundwork for further innovations in the synthesis of structurally diverse and complex natural products.\n1 Introduction\n2 Intramolecular hydroalkoxylation and hydroacyloxylation reactions\n3 Intramolecular hydroamination reactions\n4 Intramolecular hydroarylation reactions\n5 Deprotective cyclization\n6 Asymmetric intramolecular hydroalkoxylation\n","PeriodicalId":22319,"journal":{"name":"Synlett","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synlett","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1055/a-2337-2498","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Catalytic transformation of alkenes via the metal-hydride hydrogen atom transfer (MHAT) mechanism has notably advanced synthetic organic chemistry. This review focuses on MHAT/radical-polar crossover (MHAT/RPC) conditions, offering a novel perspective on generating electrophilic intermediates and facilitating various intramolecular reactions. Upon using cobalt hydrides, the MHAT mechanism displayed exceptional chemoselectivity and functional group tolerance, making it invaluable for the construction of complex biologically relevant molecules under mild conditions. Recent developments have enhanced regioselectivity and expanded the scope of MHAT-type reactions, enabling the formation of cyclic molecules via hydroalkoxylation, hydroacyloxylation, and hydroamination. Notably, the addition of an oxidant to traditional MHAT systems enables the synthesis of rare cationic alkylcobalt(IV) complexes, bridging radical mechanisms to ionic reaction systems. This review culminates with examples of natural product syntheses and exploration of asymmetric intramolecular hydroalkoxylation, highlighting the ongoing challenges and opportunities for future research to achieve higher enantioselectivity. This comprehensive study revisits the historical evolution of the MHAT mechanism and provides the groundwork for further innovations in the synthesis of structurally diverse and complex natural products. 1 Introduction 2 Intramolecular hydroalkoxylation and hydroacyloxylation reactions 3 Intramolecular hydroamination reactions 4 Intramolecular hydroarylation reactions 5 Deprotective cyclization 6 Asymmetric intramolecular hydroalkoxylation

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过金属催化的氢原子转移/自由基-极性交叉实现环化
通过金属氢化物氢原子转移(MHAT)机制对烯进行催化转化,显著推动了合成有机化学的发展。本综述侧重于 MHAT/自由基-极性交叉(MHAT/RPC)条件,为生成亲电中间体和促进各种分子内反应提供了新的视角。在使用钴氢化物时,MHAT 机制显示出卓越的化学选择性和官能团耐受性,使其成为在温和条件下构建复杂生物相关分子的宝贵手段。最近的研究进展提高了 MHAT 类反应的区域选择性并扩大了其范围,使其能够通过氢烷氧基化、氢异烷氧基化和氢氨基化形成环状分子。值得注意的是,在传统的 MHAT 系统中加入氧化剂可合成罕见的阳离子烷基钴(IV)复合物,从而将自由基机制与离子反应系统连接起来。本综述以天然产物合成和分子内不对称氢烷氧基化的探索为例,强调了未来研究在实现更高的对映选择性方面所面临的挑战和机遇。本综合研究回顾了 MHAT 机理的历史演变,为进一步创新合成结构多样、复杂的天然产物奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Synlett
Synlett 化学-有机化学
CiteScore
3.40
自引率
5.00%
发文量
369
审稿时长
1 months
期刊介绍: SYNLETT is an international journal reporting research results and current trends in chemical synthesis in short personalized reviews and preliminary communications. It covers all fields of scientific endeavor that involve organic synthesis, including catalysis, organometallic, medicinal, biological, and photochemistry, but also related disciplines and offers the possibility to publish scientific primary data.
期刊最新文献
Skeletal Reorganization: Approaches towards the Synthesis of Aza-Heterocyclic Cores Synthesis of Phosphorodiamidate Morpholino Oligonucleotides (PMOs) Using Staudinger Reduction as a Deblocking Condition and Its Usefulness for Orthogonal Conjugation in Bi- and Trifunctionalized PMOs Sequential Copper-Catalyzed Amidation and Hydroxylation for Acetaminophen Synthesis Design and Synthesis of Out/Out, Out/In, and In/In Epoxides in Polycyclic Cage Frameworks Design of Molecular Diversity by Olefin Metathesis in Tandem with Other Reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1