We report here a Ni-NPs-catalyzed one-pot synthesis of 2-alkyl/aryl quinazolinone motifs via acceptorless dehydrogenation of alcohol, condensation of an aldehyde intermediate with 2-aminobenzamide, followed by a second dehydrogenation of the cyclized intermediate. The protocol is atom-economical and require earth-abundant Ni as the catalyst. The present report involves the annulation of 2-aminobenzamide with various types of primary alcohols, including aryl/heteroaryl methanol, and aliphatic alcohols, and produces high yields of the desired products under neat conditions. The catalyst was synthesized via a high-temperature pyrolysis strategy, using ZIF-8 as the sacrificial template. The Ni NPs@N-C catalyst was characterized by XPS, HR-TEM, HAADF-STEM, XRD, and ICP-MS. The catalyst is stable even in air at room temperature and displayed excellent activity in the acceptorless dehydrogenative coupling synthesis of quinazolinones and could be recycled five times without appreciable loss of its activity.
我们在此报告了一种 Ni-NPs 催化的单锅合成 2-烷基/芳基喹唑啉酮基团的方法,该方法通过醇的无受体脱氢、醛中间体与 2- 氨基苯甲酰胺的缩合,然后对环化中间体进行第二次脱氢。该方案原子经济,需要地球上丰富的 Ni 作为催化剂。本报告涉及 2-氨基苯甲酰胺与各种类型的伯醇(包括芳基/杂芳基甲醇和脂肪醇)的环化反应,并在纯净条件下产生高产率的所需产物。该催化剂是以 ZIF-8 为牺牲模板,通过高温热解策略合成的。通过 XPS、HR-TEM、HAADF-STEM、XRD 和 ICP-MS 对 Ni NPs@N-C 催化剂进行了表征。该催化剂即使在室温空气中也很稳定,在喹唑啉酮类化合物的无受体脱氢偶联合成中表现出优异的活性,并且可以循环使用五次而不会明显降低其活性。
{"title":"Acceptorless Dehydrogenation under Neat Reaction Conditions: Synthesis of 2-Aryl/Alkyl Quinazolinones Using Supported Ni NPs as Catalyst","authors":"Vageesh MM, Omkar Patil, Hima PP, Raju Dey","doi":"10.1055/a-2388-9487","DOIUrl":"https://doi.org/10.1055/a-2388-9487","url":null,"abstract":"<p>We report here a Ni-NPs-catalyzed one-pot synthesis of 2-alkyl/aryl quinazolinone motifs <i>via</i> acceptorless dehydrogenation of alcohol, condensation of an aldehyde intermediate with 2-aminobenzamide, followed by a second dehydrogenation of the cyclized intermediate. The protocol is atom-economical and require earth-abundant Ni as the catalyst. The present report involves the annulation of 2-aminobenzamide with various types of primary alcohols, including aryl/heteroaryl methanol, and aliphatic alcohols, and produces high yields of the desired products under neat conditions. The catalyst was synthesized <i>via</i> a high-temperature pyrolysis strategy, using ZIF-8 as the sacrificial template. The Ni NPs@N-C catalyst was characterized by XPS, HR-TEM, HAADF-STEM, XRD, and ICP-MS. The catalyst is stable even in air at room temperature and displayed excellent activity in the acceptorless dehydrogenative coupling synthesis of quinazolinones and could be recycled five times without appreciable loss of its activity.</p> ","PeriodicalId":22319,"journal":{"name":"Synlett","volume":"29 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For hundreds of years, it seems that people have needed stirring to conduct chemical experiments. This operation can be seen everywhere in chemical, pharmaceutical, and materials laboratories and factories. People generally believe that stirring helps with processes such as material dispersion, dissolution, and collision, thereby enabling more-efficient reactions. However, why do chemical reactions that occur in Nature not require stirring? What are the facts? For this purpose, we investigated a total of 329 organic chemical reactions in eight categories and 25 types, including 26 chemical reactions magnified to gram or even kilogram levels. Under the same conditions of temperature, humidity, pressure, and reaction time, we compared the reaction yields under stirring and standing conditions. More than 600 results showed that stirring or not stirring had almost no effect on the efficiency of chemical reactions in solution. If most chemists performing reactions turned off the agitator, it would not be difficult to imagine how much electricity could be saved!
{"title":"Comparison of the Effects of Stirring and Standing on Chemical Reactions","authors":"Xianting Huang, Jianyou Zhao, Qingxu Wang, Pengkai Fang, Wei Xie, Meng Chen, Hongliang Han, Lanlan Zhang, Jiatai Zhang, Fan Wang, Zhong-Quan Liu","doi":"10.1055/a-2384-7220","DOIUrl":"https://doi.org/10.1055/a-2384-7220","url":null,"abstract":"<p>For hundreds of years, it seems that people have needed stirring to conduct chemical experiments. This operation can be seen everywhere in chemical, pharmaceutical, and materials laboratories and factories. People generally believe that stirring helps with processes such as material dispersion, dissolution, and collision, thereby enabling more-efficient reactions. However, why do chemical reactions that occur in Nature not require stirring? What are the facts? For this purpose, we investigated a total of 329 organic chemical reactions in eight categories and 25 types, including 26 chemical reactions magnified to gram or even kilogram levels. Under the same conditions of temperature, humidity, pressure, and reaction time, we compared the reaction yields under stirring and standing conditions. More than 600 results showed that stirring or not stirring had almost no effect on the efficiency of chemical reactions in solution. If most chemists performing reactions turned off the agitator, it would not be difficult to imagine how much electricity could be saved!</p> ","PeriodicalId":22319,"journal":{"name":"Synlett","volume":"41 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}