{"title":"A comparative study on the slag resistance of MgO–C, low-carbon MgO–C, and MgO–SiC–C refractories","authors":"Xin Qi, Xudong Luo, Huazhi Gu, Lei Cao, Ying Tao, Qingdong Hou","doi":"10.1111/ijac.14812","DOIUrl":null,"url":null,"abstract":"<p>The corrosion of slag on refractories usually starts from the matrix, so improving the slag resistance of the matrix is of great significance for the slag resistance of the refractories. To clarify the influence of matrix on the slag resistance of magnesia–carbon refractories, the slag corrosion experiments were conducted at 1873 K on MgO–C refractories, low-carbon MgO–C refractories, and MgO–SiC–C refractories. The results showed that the slag resistance of MgO–C refractories was higher than that of low-carbon MgO–C refractories, and the slag resistance of MgO–SiC–C refractories was superior to that of low-carbon MgO–C refractories. The interaction between MgO–SiC–C refractories and slag generated high melting point phases such as forsterite and spinel, reducing the routes for the slag to infiltrate the inside of the refractories. MgO–SiC–C refractories reacted with slag to increase the viscosity of the slag, the viscosity being 86.3% and 51.9% higher than in the case of low-carbon MgO–C and MgO–C refractories, respectively. Compared with MgO–SiC–C refractories, MgO–C refractories did not exhibit overwhelming advantages in slag resistance. Due to the low-carbon content and good slag resistance, MgO–SiC–C refractories were promising low-carbon magnesia-based refractories for high-temperature industries.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"4380-4392"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14812","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The corrosion of slag on refractories usually starts from the matrix, so improving the slag resistance of the matrix is of great significance for the slag resistance of the refractories. To clarify the influence of matrix on the slag resistance of magnesia–carbon refractories, the slag corrosion experiments were conducted at 1873 K on MgO–C refractories, low-carbon MgO–C refractories, and MgO–SiC–C refractories. The results showed that the slag resistance of MgO–C refractories was higher than that of low-carbon MgO–C refractories, and the slag resistance of MgO–SiC–C refractories was superior to that of low-carbon MgO–C refractories. The interaction between MgO–SiC–C refractories and slag generated high melting point phases such as forsterite and spinel, reducing the routes for the slag to infiltrate the inside of the refractories. MgO–SiC–C refractories reacted with slag to increase the viscosity of the slag, the viscosity being 86.3% and 51.9% higher than in the case of low-carbon MgO–C and MgO–C refractories, respectively. Compared with MgO–SiC–C refractories, MgO–C refractories did not exhibit overwhelming advantages in slag resistance. Due to the low-carbon content and good slag resistance, MgO–SiC–C refractories were promising low-carbon magnesia-based refractories for high-temperature industries.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;