Research and application of Rayleigh wave imaging based on the Born–Jordan time‐frequency distribution

IF 1.1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Near Surface Geophysics Pub Date : 2024-06-03 DOI:10.1002/nsg.12304
Xiang Min, Zhang Xuhui, Xiaoyong Yao, Zhongxiang Jiang
{"title":"Research and application of Rayleigh wave imaging based on the Born–Jordan time‐frequency distribution","authors":"Xiang Min, Zhang Xuhui, Xiaoyong Yao, Zhongxiang Jiang","doi":"10.1002/nsg.12304","DOIUrl":null,"url":null,"abstract":"Currently, the horizontal resolution of Rayleigh wave exploration is low. In this study, we propose the Born–Jordan time‐frequency distribution to analyse Rayleigh waves. The seismic signal was filtered with a wavelet transform for denoising, and the Rayleigh wave was separated in the time domain. Using the Born–Jordan time‐frequency distribution, the time waveform of each frequency comprising the Rayleigh wave from every seismic channel was obtained, and the time difference of the Rayleigh wave with the same frequency was calculated, based on which the dispersion curve between the two channels was obtained. Combined with the multichannel Rayleigh wave dispersion curve, phase velocity and frequency imaging under the seismic arrangement were obtained. Applying this method to detect abnormal geological bodies in engineering investigations showed that hard geologic bodies, such as comcrete rocks, have high velocity and frequency, whereas weak ones have low velocity and frequency. This strategy facilitated the detection of fractured zones, underground goafs and obstacles during pipe‐jacking construction near the surface.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Near Surface Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/nsg.12304","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, the horizontal resolution of Rayleigh wave exploration is low. In this study, we propose the Born–Jordan time‐frequency distribution to analyse Rayleigh waves. The seismic signal was filtered with a wavelet transform for denoising, and the Rayleigh wave was separated in the time domain. Using the Born–Jordan time‐frequency distribution, the time waveform of each frequency comprising the Rayleigh wave from every seismic channel was obtained, and the time difference of the Rayleigh wave with the same frequency was calculated, based on which the dispersion curve between the two channels was obtained. Combined with the multichannel Rayleigh wave dispersion curve, phase velocity and frequency imaging under the seismic arrangement were obtained. Applying this method to detect abnormal geological bodies in engineering investigations showed that hard geologic bodies, such as comcrete rocks, have high velocity and frequency, whereas weak ones have low velocity and frequency. This strategy facilitated the detection of fractured zones, underground goafs and obstacles during pipe‐jacking construction near the surface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 Born-Jordan 时频分布的瑞利波成像研究与应用
目前,瑞利波探测的水平分辨率较低。在本研究中,我们提出用 Born-Jordan 时频分布来分析瑞利波。利用小波变换对地震信号进行滤波去噪,并在时域中分离瑞利波。利用 Born-Jordan 时频分布,得到每个地震道瑞利波各频率的时间波形,并计算出相同频率瑞利波的时间差,据此得到两个地震道之间的频散曲线。结合多道瑞利波频散曲线,可获得地震排列下的相速度和频率成像。在工程勘察中应用这种方法探测异常地质体时发现,坚硬的地质体(如混凝土岩)具有较高的速度和频率,而软弱的地质体则具有较低的速度和频率。这种策略有助于探测地表附近的断裂带、地下岩浆和顶管施工过程中的障碍物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Near Surface Geophysics
Near Surface Geophysics 地学-地球化学与地球物理
CiteScore
3.60
自引率
12.50%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Near Surface Geophysics is an international journal for the publication of research and development in geophysics applied to near surface. It places emphasis on geological, hydrogeological, geotechnical, environmental, engineering, mining, archaeological, agricultural and other applications of geophysics as well as physical soil and rock properties. Geophysical and geoscientific case histories with innovative use of geophysical techniques are welcome, which may include improvements on instrumentation, measurements, data acquisition and processing, modelling, inversion, interpretation, project management and multidisciplinary use. The papers should also be understandable to those who use geophysical data but are not necessarily geophysicists.
期刊最新文献
High‐resolution surface‐wave‐constrained mapping of sparse dynamic cone penetrometer tests Application of iterative elastic reverse time migration to shear horizontal ultrasonic echo data obtained at a concrete step specimen Innovative imaging of iron deposits using cross‐gradient joint inversion of potential field data with petrophysical correlation A fine‐tuning workflow for automatic first‐break picking with deep learning How to promote geophysics as a standard tool for geotechnical investigations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1