O. Milyaeva, A. Akentiev, A. Bykov, Reinhard Miller, A. R. Rafikova, Kseniya Yu. Rotanova, B. Noskov
{"title":"Silk Fibroin Self-Assembly at the Air–Water Interface","authors":"O. Milyaeva, A. Akentiev, A. Bykov, Reinhard Miller, A. R. Rafikova, Kseniya Yu. Rotanova, B. Noskov","doi":"10.3390/colloids8030035","DOIUrl":null,"url":null,"abstract":"Amphiphilic silk fibroin (SF) forms stable adsorption layers at the air–water interface. The range of the investigated protein concentrations can be divided into two parts according to the peculiarities of the surface layer properties. At protein concentrations from 0.0005 to 0.01 mg/mL, the dynamic surface elasticity monotonically increases with the concentration and surface age and reaches values of up to 220 mN/m. In this range, the adsorption layer compression leads to a fast increase of the surface pressure. In the second part (>0.01 mg/mL), the surface elasticity decreases again and the kinetic dependences of the film thickness and adsorbed amount change only a little. In this case, the layer compression leads only to a slight increase of the surface pressure. These two types of behavior can be attributed to the distinctions in the protein aggregation in the surface layer. Atomic force microscopy (AFM) investigations of the layers transferred from the liquid surface onto a mica surface by the Langmuir–Schaefer method show some peculiarities of the layer morphology in the intermediate concentration range (~0.02 mg/mL).","PeriodicalId":504814,"journal":{"name":"Colloids and Interfaces","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/colloids8030035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Amphiphilic silk fibroin (SF) forms stable adsorption layers at the air–water interface. The range of the investigated protein concentrations can be divided into two parts according to the peculiarities of the surface layer properties. At protein concentrations from 0.0005 to 0.01 mg/mL, the dynamic surface elasticity monotonically increases with the concentration and surface age and reaches values of up to 220 mN/m. In this range, the adsorption layer compression leads to a fast increase of the surface pressure. In the second part (>0.01 mg/mL), the surface elasticity decreases again and the kinetic dependences of the film thickness and adsorbed amount change only a little. In this case, the layer compression leads only to a slight increase of the surface pressure. These two types of behavior can be attributed to the distinctions in the protein aggregation in the surface layer. Atomic force microscopy (AFM) investigations of the layers transferred from the liquid surface onto a mica surface by the Langmuir–Schaefer method show some peculiarities of the layer morphology in the intermediate concentration range (~0.02 mg/mL).