Tunable Suboptimal Heuristic Search

Stephen Wissow, Fanhao Yu, Wheeler Ruml
{"title":"Tunable Suboptimal Heuristic Search","authors":"Stephen Wissow, Fanhao Yu, Wheeler Ruml","doi":"10.1609/socs.v17i1.31555","DOIUrl":null,"url":null,"abstract":"Finding optimal solutions to state-space search problems often takes too long, even when using A* with a heuristic function. Instead, practitioners often use a tunable approach, such as weighted A*, that allows them to adjust a trade-off between search time and solution cost until the search is sufficiently fast for the intended application. In this paper, we study algorithms for this problem setting, which we call `tunable suboptimal search'. We introduce a simple baseline, called Speed*, that uses distance-to-go information to speed up search. Experimental results on standard search benchmarks suggest that 1) bounded-suboptimal searches suffer overhead due to enforcing a suboptimality bound, 2) beam searches can perform well, but fare poorly in domains with dead-ends, and 3) Speed* provides robust overall performance.","PeriodicalId":425645,"journal":{"name":"Symposium on Combinatorial Search","volume":"36 24","pages":"170-178"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Combinatorial Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/socs.v17i1.31555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Finding optimal solutions to state-space search problems often takes too long, even when using A* with a heuristic function. Instead, practitioners often use a tunable approach, such as weighted A*, that allows them to adjust a trade-off between search time and solution cost until the search is sufficiently fast for the intended application. In this paper, we study algorithms for this problem setting, which we call `tunable suboptimal search'. We introduce a simple baseline, called Speed*, that uses distance-to-go information to speed up search. Experimental results on standard search benchmarks suggest that 1) bounded-suboptimal searches suffer overhead due to enforcing a suboptimality bound, 2) beam searches can perform well, but fare poorly in domains with dead-ends, and 3) Speed* provides robust overall performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可调次优启发式搜索
即使使用带有启发式函数的 A*,寻找状态空间搜索问题的最优解也往往耗时过长。取而代之的是,实践者通常使用一种可调整的方法,如加权 A*,这种方法允许他们调整搜索时间和求解成本之间的权衡,直到搜索速度足以满足预期应用的要求。在本文中,我们研究了这种问题设置的算法,我们称之为 "可调整的次优搜索"。我们引入了一种简单的基线算法,称为 "Speed*",它能利用搜索距离信息来加快搜索速度。在标准搜索基准上的实验结果表明:1)有界次优搜索会因为强制执行次优约束而产生开销;2)波束搜索表现良好,但在有死胡同的领域中表现不佳;3)Speed* 提供了稳健的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A-A*pex: Efficient Anytime Approximate Multi-Objective Search Tunable Suboptimal Heuristic Search Hitting Set Heuristics for Overlapping Landmarks in Satisficing Planning Fools Rush in Where Angels Fear to Tread in Multi-Goal CBS Evaluating Distributional Predictions of Search Time: Put Up or Shut Up Games (Extended Abstract)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1