A techno-economic assessment of the viability of a photovoltaic-wind-battery storage-hydrogen energy system for electrifying primary healthcare centre in Sub-Saharan Africa

IF 7.1 Q1 ENERGY & FUELS Energy Conversion and Management-X Pub Date : 2024-06-04 DOI:10.1016/j.ecmx.2024.100643
Oluwaseye Samson Adedoja , Emmanuel Rotimi Sadiku , Yskandar Hamam
{"title":"A techno-economic assessment of the viability of a photovoltaic-wind-battery storage-hydrogen energy system for electrifying primary healthcare centre in Sub-Saharan Africa","authors":"Oluwaseye Samson Adedoja ,&nbsp;Emmanuel Rotimi Sadiku ,&nbsp;Yskandar Hamam","doi":"10.1016/j.ecmx.2024.100643","DOIUrl":null,"url":null,"abstract":"<div><p>Healthcare facilities in isolated rural areas of sub-Saharan Africa face challenges in providing essential health services due to unreliable energy access. This study examines the use of hybrid renewable energy systems consisting of solar PV, wind turbines, batteries, and hydrogen storage for the electrification of rural healthcare facilities in Nigeria and South Africa. The study deployed the efficacy of Hybrid Optimization of Multiple Energy Resources software for techno-economic analysis and the Evaluation based on the Distance from Average Solution method for multi-criteria decision-making for sizing, optimizing, and selecting the optimal energy system. Results show that the optimal configurations achieve cost-effective levelized energy costs ranging from $0.336 to $0.410/kWh for both countries. For the Nigeria case study, the optimal energy system includes 5 kW PV, 10 kW fuel cell, 10 kW inverter, 10 kW electrolyzer, and 16 kg hydrogen tank. South Africa’s optimal configuration has 5 kW PV, 10 kW battery, 10 kW inverter, and 7.5 kW rectifier. Solar PV provides more than 90 % of energy, with dual axis tracking yielding the highest output: 8,889kWh/yr for Nigeria and 10,470kWh/yr for South Africa. The multi-criteria decision-making analysis reveals that Nigeria’s preferred option is the hybrid system without tracking. In contrast, the horizontal axis, weekly adjustment tracking configuration is optimal for South Africa, considering technical, economic, and environmental criteria. The findings highlight the importance of context-specific optimization for hybrid renewable energy systems in rural healthcare facilities to accelerate Sustainable Development Goals 3 and 7.</p></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590174524001211/pdfft?md5=d6210eea451260d76697498f88ec0b32&pid=1-s2.0-S2590174524001211-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524001211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Healthcare facilities in isolated rural areas of sub-Saharan Africa face challenges in providing essential health services due to unreliable energy access. This study examines the use of hybrid renewable energy systems consisting of solar PV, wind turbines, batteries, and hydrogen storage for the electrification of rural healthcare facilities in Nigeria and South Africa. The study deployed the efficacy of Hybrid Optimization of Multiple Energy Resources software for techno-economic analysis and the Evaluation based on the Distance from Average Solution method for multi-criteria decision-making for sizing, optimizing, and selecting the optimal energy system. Results show that the optimal configurations achieve cost-effective levelized energy costs ranging from $0.336 to $0.410/kWh for both countries. For the Nigeria case study, the optimal energy system includes 5 kW PV, 10 kW fuel cell, 10 kW inverter, 10 kW electrolyzer, and 16 kg hydrogen tank. South Africa’s optimal configuration has 5 kW PV, 10 kW battery, 10 kW inverter, and 7.5 kW rectifier. Solar PV provides more than 90 % of energy, with dual axis tracking yielding the highest output: 8,889kWh/yr for Nigeria and 10,470kWh/yr for South Africa. The multi-criteria decision-making analysis reveals that Nigeria’s preferred option is the hybrid system without tracking. In contrast, the horizontal axis, weekly adjustment tracking configuration is optimal for South Africa, considering technical, economic, and environmental criteria. The findings highlight the importance of context-specific optimization for hybrid renewable energy systems in rural healthcare facilities to accelerate Sustainable Development Goals 3 and 7.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对光伏-风能-电池储能-氢能系统用于撒哈拉以南非洲初级保健中心电气化的可行性进行技术经济评估
由于能源供应不可靠,撒哈拉以南非洲偏远农村地区的医疗机构在提供基本医疗服务方面面临挑战。本研究探讨了如何利用由太阳能光伏发电、风力涡轮机、电池和氢气储存组成的混合可再生能源系统实现尼日利亚和南非农村医疗设施的电气化。研究利用多种能源资源混合优化软件进行技术经济分析,并利用基于平均解距离的评估方法进行多标准决策,以确定最佳能源系统的规模、优化和选择。结果表明,在这两个国家,最优配置实现了具有成本效益的平准化能源成本,从 0.336 美元/千瓦时到 0.410 美元/千瓦时不等。在尼日利亚的案例研究中,最佳能源系统包括 5 千瓦光伏发电、10 千瓦燃料电池、10 千瓦逆变器、10 千瓦电解槽和 16 千克氢气罐。南非的最佳配置包括 5 千瓦光伏发电、10 千瓦电池、10 千瓦逆变器和 7.5 千瓦整流器。太阳能光伏发电提供了 90% 以上的能源,其中双轴跟踪发电的输出功率最高:尼日利亚为每年 8,889 千瓦时,南非为每年 10,470 千瓦时。多标准决策分析显示,尼日利亚的首选方案是不带跟踪的混合系统。相比之下,考虑到技术、经济和环境标准,横轴每周调整跟踪配置是南非的最佳选择。研究结果凸显了针对具体情况优化农村医疗机构混合可再生能源系统以加快实现可持续发展目标 3 和 7 的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
3.20%
发文量
180
审稿时长
58 days
期刊介绍: Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability. The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.
期刊最新文献
Low-GWP refrigerants in heat pumps: An experimental investigation of the influence of an internal heat exchanger Steady and transient modeling of dye-sensitive solar cells: The impact of electrode thickness and dye specifications Aggregator control of battery energy storage in wind power stations to maximize availability of regulation service Methodology to assess the impact of urban vegetation on the energy consumption of residential buildings. Case study in a Mediterranean city Electromagnetic vibrational harvester based on U-shaped ferromagnetic cantilever: A novel two-magnet configuration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1