Advancing hydrogen peroxide electro-generation: Selective production at high rates in a flow-through module

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2024-06-03 DOI:10.1016/j.electacta.2024.144533
Mojtaba Mohseni , Waralee Dilokekunakul , Matthias Wessling , Robert G. Keller
{"title":"Advancing hydrogen peroxide electro-generation: Selective production at high rates in a flow-through module","authors":"Mojtaba Mohseni ,&nbsp;Waralee Dilokekunakul ,&nbsp;Matthias Wessling ,&nbsp;Robert G. Keller","doi":"10.1016/j.electacta.2024.144533","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical synthesis of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) via oxygen reduction reactions (ORR) represents a green, environmentally friendly, and decentralized alternative to the conventional, fossil-based, and centralized anthraquinone process. This work presents a flow-through module using commercial carbon black (CB) as a catalyst at current densities of up to 120<!--> <!-->mA<!--> <!-->cm<sup>−2</sup>. Acid treatment of CB increases its oxygen content, leading to Faraday efficiency (FE) values above 80<!--> <!-->% with a maximum specific H<sub>2</sub>O<sub>2</sub> production rate of 64.3<!--> <!-->mg<!--> <!-->cm<sup>−2</sup> <!-->h<sup>−1</sup>. Additionally, the effect of catalyst loading on the functionality of a gas diffusion electrode (GDE) at 120<!--> <!-->mA<!--> <!-->cm<sup>−2</sup> and over long-term electrolysis (7.5<!--> <!-->h) is investigated, discussing the detrimental penetration of electrolyte into the GDE due to the enhanced electro-wetting, which shifts the three-phase boundary toward the gas channel side. This study underscores the critical significance of optimizing the parameters involved in GDE fabrication, especially under high current densities and extended operational periods, propelling our understanding toward the development of a robust flow-through module for the electro-generation of H<sub>2</sub>O<sub>2</sub>.</p></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0013468624007734/pdfft?md5=e136b58425431593cd9f516e7284ac6b&pid=1-s2.0-S0013468624007734-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624007734","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical synthesis of hydrogen peroxide (H2O2) via oxygen reduction reactions (ORR) represents a green, environmentally friendly, and decentralized alternative to the conventional, fossil-based, and centralized anthraquinone process. This work presents a flow-through module using commercial carbon black (CB) as a catalyst at current densities of up to 120 mA cm−2. Acid treatment of CB increases its oxygen content, leading to Faraday efficiency (FE) values above 80 % with a maximum specific H2O2 production rate of 64.3 mg cm−2 h−1. Additionally, the effect of catalyst loading on the functionality of a gas diffusion electrode (GDE) at 120 mA cm−2 and over long-term electrolysis (7.5 h) is investigated, discussing the detrimental penetration of electrolyte into the GDE due to the enhanced electro-wetting, which shifts the three-phase boundary toward the gas channel side. This study underscores the critical significance of optimizing the parameters involved in GDE fabrication, especially under high current densities and extended operational periods, propelling our understanding toward the development of a robust flow-through module for the electro-generation of H2O2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推进过氧化氢的电生成:在流过式模块中以高速度进行选择性生产
通过氧还原反应(ORR)电化学合成过氧化氢(H2O2)是一种绿色、环保、分散的方法,可替代传统、基于化石的集中式蒽醌工艺。这项研究提出了一种使用商用炭黑(CB)作为催化剂的直流模块,电流密度高达 120 mA cm-2。对炭黑进行酸处理可增加其氧含量,从而使法拉第效率(FE)值超过 80%,最大 H2O2 生产率为 64.3 mg cm-2 h-1。此外,研究还探讨了催化剂负载在 120 mA cm-2 和长期电解(7.5 h)条件下对气体扩散电极(GDE)功能的影响,讨论了由于电润湿增强,三相边界向气体通道一侧移动,电解质渗入 GDE 的不利影响。这项研究强调了优化 GDE 制造参数的重要意义,尤其是在高电流密度和长时间运行的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
Zn-Cu bimetallic gas diffusion electrodes for electrochemical reduction of CO2 to ethylene Electrodeposition of ReMo alloys Component regulation in flower-like FexCoNiP/C nanohybrids as bifunctional efficient electrocatalysts for overall water splitting Differential impedance analysis – Extensions and applications in machine learning Effect of Surfactants on 1,2-Dichloroethane-in-Water Droplet Impacts at Electrified Liquid-Liquid Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1