Pub Date : 2024-11-18DOI: 10.1016/j.electacta.2024.145383
Fangshun Zhu, Suyuan Zhang, Qingfeng Zhang, Kuanjie Ma, Jun Wu, Yurong Cai
Aiming to accelerate sodium-ion transport kinetics and improve electrochemical cyclability of batteries, an In2S3/CoS2 bimetallic sulfide heterostructure was synthesized as anodes of sodium-ion batteries (SIBs) in this paper by a feasible ion exchange and subsequent hydrothermal vulcanization technique based on a cobalt metal-organic skeleton (ZIF-67) precursor. As-prepared In2S3/CoS2 composite exhibited an excellent rate capability of 453.8 mAh g-1 at 10 A g-1 and outstanding cyclability of 464.06 mAh g-1 after 600 cycles at 2 A g-1. The built-in electric filed between heterogeneous interface of In2S3 and CoS2 plays a dominant contribution on improvement of electronic conductivity and charge transfer kinetics. Beyond that abundant defects derived from ion exchange and nanocrystallization of composite particles also have a positive synergistic effect on inducing additional active centers for adsorption of Na+ and shortening ion transport distance for further accelerating reaction kinetics. Based on exploring conversion and alloying mechanism of In2S3/CoS2 composite via ex situ XRD and TEM, high-performance SIBs with heterostructure bimetallic sulfide anodes may be a prospective strategy.
为了加速钠离子传输动力学和提高电池的电化学循环能力,本文以钴金属有机骨架(ZIF-67)为前驱体,通过可行的离子交换和后续水热硫化技术合成了 In2S3/CoS2 双金属硫化物异质结构,作为钠离子电池(SIB)的阳极。所制备的 In2S3/CoS2 复合材料在 10 A g-1 的条件下具有 453.8 mAh g-1 的优异速率能力,在 2 A g-1 的条件下循环 600 次后具有 464.06 mAh g-1 的出色循环能力。In2S3 和 CoS2 异质界面之间的内置电场对电子传导性和电荷转移动力学的改善起到了主导作用。此外,复合粒子的离子交换和纳米结晶产生的丰富缺陷也具有积极的协同作用,可诱导额外的活性中心吸附 Na+,并缩短离子传输距离,从而进一步加速反应动力学。在通过原位 XRD 和 TEM 探索 In2S3/CoS2 复合材料的转化和合金化机理的基础上,采用异质结构双金属硫化物阳极的高性能 SIB 可能是一种具有前景的策略。
{"title":"Defect-Rich In2S3/CoS2 Heterostructure for Rapid Storage of Sodium Ions","authors":"Fangshun Zhu, Suyuan Zhang, Qingfeng Zhang, Kuanjie Ma, Jun Wu, Yurong Cai","doi":"10.1016/j.electacta.2024.145383","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145383","url":null,"abstract":"Aiming to accelerate sodium-ion transport kinetics and improve electrochemical cyclability of batteries, an In<sub>2</sub>S<sub>3</sub>/CoS<sub>2</sub> bimetallic sulfide heterostructure was synthesized as anodes of sodium-ion batteries (SIBs) in this paper by a feasible ion exchange and subsequent hydrothermal vulcanization technique based on a cobalt metal-organic skeleton (ZIF-67) precursor. As-prepared In<sub>2</sub>S<sub>3</sub>/CoS<sub>2</sub> composite exhibited an excellent rate capability of 453.8 mAh g<sup>-1</sup> at 10 A g<sup>-1</sup> and outstanding cyclability of 464.06 mAh g<sup>-1</sup> after 600 cycles at 2 A g<sup>-1</sup>. The built-in electric filed between heterogeneous interface of In<sub>2</sub>S<sub>3</sub> and CoS<sub>2</sub> plays a dominant contribution on improvement of electronic conductivity and charge transfer kinetics. Beyond that abundant defects derived from ion exchange and nanocrystallization of composite particles also have a positive synergistic effect on inducing additional active centers for adsorption of Na<sup>+</sup> and shortening ion transport distance for further accelerating reaction kinetics. Based on exploring conversion and alloying mechanism of In<sub>2</sub>S<sub>3</sub>/CoS<sub>2</sub> composite via <em>ex situ</em> XRD and TEM, high-performance SIBs with heterostructure bimetallic sulfide anodes may be a prospective strategy.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"248 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1016/j.electacta.2024.145379
Emine Gul CANSU ERGUN, Ahmet M. ÖNAL
3,4-ethylenedioxythiophene (EDOT) based donor-acceptor-donor (DAD) type conjugated polymers generally have extraordinary electrochromic properties due to the excellent nature of the EDOT unit. This work investigates the electrochromic properties of such a system; EDOT-Carbazole-EDOT (ECE) based DAD type of conjugated polymer. Electrochemically synthesized homopolymer film (PECE) showed multichromic behavior with excellent optical properties such as 34 % of optical contrast, subsecond switching response (0.96 s at 478 nm), high coloration efficiency (519 cm2/C at 478 nm) and remarkable specific capacitance (3.04 F/cm2). Inserting more EDOT units into the polymer matrix of PECE via electrochemical synthesis altered the spectral and capacitive behaviors of the resulting copolymers. 2:1 (ECE:EDOT) feeded copolymer exhibited better electrochromic performance than equal feeded copolymer. On the other hand, the capacitive range and capacitance stability were significantly enhanced as the EDOT unit increased in the copolymer matrix.PECE and its copolymers were used to construct dual-type electrochromic devices with poly(3, 4-ethylenedioxythiophene) (PEDOT). ECDs of PECE and copolymers exhibited superior stability upon many switchings, with subsecond switching responses. Furthermore, ECDs can be switched effectively even at the scan rate of 500 mV/s without any loss in charge/discharge amounts. Finally, electrochromic supercapacitor device applications were performed, and a 1.5 V-LED was lighted for up to 25 seconds with the copolymer supercapacitor device.
{"title":"Effect of EDOT Contribution on The Electrochromic and Capacitive Properties of EDOT-Carbazole Based Electrochromic Polymer: Electrochromic and Supercapacitor Device Applications","authors":"Emine Gul CANSU ERGUN, Ahmet M. ÖNAL","doi":"10.1016/j.electacta.2024.145379","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145379","url":null,"abstract":"3,4-ethylenedioxythiophene (<strong>EDOT</strong>) based donor-acceptor-donor (DAD) type conjugated polymers generally have extraordinary electrochromic properties due to the excellent nature of the EDOT unit. This work investigates the electrochromic properties of such a system; EDOT-Carbazole-EDOT (<strong>ECE</strong>) based DAD type of conjugated polymer. Electrochemically synthesized homopolymer film (<strong>PECE</strong>) showed multichromic behavior with excellent optical properties such as 34 % of optical contrast, subsecond switching response (0.96 s at 478 nm), high coloration efficiency (519 cm<sup>2</sup>/C at 478 nm) and remarkable specific capacitance (3.04 F/cm<sup>2</sup>). Inserting more <strong>EDOT</strong> units into the polymer matrix of <strong>PECE</strong> via electrochemical synthesis altered the spectral and capacitive behaviors of the resulting copolymers. 2:1 (<strong>ECE:EDOT</strong>) feeded copolymer exhibited better electrochromic performance than equal feeded copolymer. On the other hand, the capacitive range and capacitance stability were significantly enhanced as the <strong>EDOT</strong> unit increased in the copolymer matrix.<strong>PECE</strong> and its copolymers were used to construct dual-type electrochromic devices with poly(3, 4-ethylenedioxythiophene) (<strong>PEDOT</strong>). ECDs of <strong>PECE</strong> and copolymers exhibited superior stability upon many switchings, with subsecond switching responses. Furthermore, ECDs can be switched effectively even at the scan rate of 500 mV/s without any loss in charge/discharge amounts. Finally, electrochromic supercapacitor device applications were performed, and a 1.5 V-LED was lighted for up to 25 seconds with the copolymer supercapacitor device.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"31 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1016/j.electacta.2024.145381
Jiangchuan Liu, Xijuan Xuan, Yi Yu, Qiaowen Li, Wenchang Wang, Zhidong Chen, Changhai Liu
A desirable material with high surface area and optimized electronic properties is urgently required to boost the supercapacitors performance. Herein, we develop a hierarchical heterogeneous electrode material of NiCo2O4@CoWO4/NF with nano-needles combined core-shell structure. This hierarchical heterogeneous electrode material features optimized interface charge distribution, which improves the electron transfer rate and storage density. In addition, we propose a mechanism concerning that the heterogeneous interface improves the surface electron delocalization to enhances the hydroxyl adsorption energy. The hydroxyl adsorption energy is increased from 0.95 eV to 1.13 eV in the presence of NiCo2O4@CoWO4 heterogeneous interface. As a result, the reaction kinetics between the electroactive center of NiCo2O4 and the collector is enhanced under the strong interfacial coupling of CoWO4, a specific capacity as high as 1624 C g−1 (with a current density of 1 A g−1), and an energy density of 88.38 Wh kg−1 (with a power density of 884.78 W kg−1) with a wide voltage window of 0-1.7 V. In addition, it also shows surprising cycling stability with 98% capacity retention after 10,000 cycles at a current density of 10 A g−1. This work provides a new strategy for optimizing the surface and interfacial electronic properties of heterostructure materials.
要提高超级电容器的性能,迫切需要一种具有高比表面积和优化电子特性的理想材料。在此,我们开发了一种具有纳米针状核壳组合结构的 NiCo2O4@CoWO4/NF 分层异质电极材料。这种分层异质电极材料优化了界面电荷分布,提高了电子传输速率和存储密度。此外,我们还提出了一种机制,即异质界面改善了表面电子脱局域,从而提高了羟基吸附能。在 NiCo2O4@CoWO4 异质界面存在时,羟基吸附能从 0.95 eV 提高到 1.13 eV。因此,在 CoWO4 的强界面耦合作用下,NiCo2O4 的电活性中心与集电体之间的反应动力学得到了增强,比容量高达 1624 C g-1(电流密度为 1 A g-1),能量密度为 88.38 Wh kg-1(功率密度为 884.78 W kg-1),电压窗口宽达 0-1.7 V。这项工作为优化异质结构材料的表面和界面电子特性提供了一种新策略。
{"title":"Regulating the local charge distribution in NiCo2O4@CoWO4 anode materials for hybrid asymmetric supercapacitors","authors":"Jiangchuan Liu, Xijuan Xuan, Yi Yu, Qiaowen Li, Wenchang Wang, Zhidong Chen, Changhai Liu","doi":"10.1016/j.electacta.2024.145381","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145381","url":null,"abstract":"A desirable material with high surface area and optimized electronic properties is urgently required to boost the supercapacitors performance. Herein, we develop a hierarchical heterogeneous electrode material of NiCo<sub>2</sub>O<sub>4</sub>@CoWO<sub>4</sub>/NF with nano-needles combined core-shell structure. This hierarchical heterogeneous electrode material features optimized interface charge distribution, which improves the electron transfer rate and storage density. In addition, we propose a mechanism concerning that the heterogeneous interface improves the surface electron delocalization to enhances the hydroxyl adsorption energy. The hydroxyl adsorption energy is increased from 0.95 eV to 1.13 eV in the presence of NiCo<sub>2</sub>O<sub>4</sub>@CoWO<sub>4</sub> heterogeneous interface. As a result, the reaction kinetics between the electroactive center of NiCo<sub>2</sub>O<sub>4</sub> and the collector is enhanced under the strong interfacial coupling of CoWO<sub>4</sub>, a specific capacity as high as 1624 C g<sup>−1</sup> (with a current density of 1 A g<sup>−1</sup>), and an energy density of 88.38 Wh kg<sup>−1</sup> (with a power density of 884.78 W kg<sup>−1</sup>) with a wide voltage window of 0-1.7 V. In addition, it also shows surprising cycling stability with 98% capacity retention after 10,000 cycles at a current density of 10 A g<sup>−1</sup>. This work provides a new strategy for optimizing the surface and interfacial electronic properties of heterostructure materials.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"17 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1016/j.electacta.2024.145373
Mohsin Ali Marwat, Muhammad Fawad Khan, Muhammad Humayun, Saad Ali, Muhammad Ramzan Abdul Karim, Syed Shaheen Shah, Mohamed Bououdina, Zia Ud Din, Kanwar Muhammad Adam, Syed Muhammad Abdullah
Addressing the challenges posed by the global energy crisis, this research article explores the pivotal role of novel NiCoMn MOFs/Ag Citrate Nanocomposites in advancing high-performance asymmetric supercapacitor applications. This study delves into the synthesis of an efficient supercapacitor electrode material using a nanocomposite, denoted as MAx (where x=1-3), combining NiCoMn metal-organic frameworks (MOFs, represented as M) with Ag-Citrate (notated as A). This synthesis employs an ultrasonication-assisted solvothermal approach. The XRD and SEM analyses authenticate the presence of anticipated phases and elements, revealing a seamless integration of the two components. Electrochemical assessments suggest that introducing Ag-citrate significantly augments the charge storage prowess of the nanocomposites. Specifically, the MA1 nanocomposite showcases a remarkable specific capacity of 762 C/g at 0.5 Ag−1, marking enhancements of 83% and 10% compared to pure Ag-citrate and unaltered MOFs, respectively. Furthermore, the asymmetric supercapacitor device based on this nanocomposite delivers optimal metrics: a specific capacity of 291.6 C/g at 2 Ag−1, an energy density of 61Whkg−1, a power density of 1500 Wkg−1, a Coulombic efficiency of 98.5%, and an enduring stability of 101% over 4000 cycles. This exploration accentuates the significant promise of NiCoMn MOFs/Ag-Citrate nanocomposites as efficient, economical, and durable supercapacitors for a spectrum of energy storage needs.
为应对全球能源危机带来的挑战,本研究文章探讨了新型镍钴锰金属有机框架/柠檬酸银纳米复合材料在推动高性能非对称超级电容器应用中的关键作用。本研究深入探讨了一种高效超级电容器电极材料的合成方法,这种纳米复合材料将镍钴锰金属有机框架(MOFs,用 M 表示)与柠檬酸银(Ag-Citrate,用 A 表示)结合在一起,用 MAx 表示(x=1-3)。该合成采用了超声辅助溶热法。XRD 和 SEM 分析证实了预期相和元素的存在,揭示了两种成分的无缝结合。电化学评估表明,引入柠檬酸银可显著增强纳米复合材料的电荷存储能力。具体来说,在 0.5 Ag-1 的条件下,MA1 纳米复合材料的比容量高达 762 C/g,与纯柠檬酸银和未经改良的 MOF 相比,分别提高了 83% 和 10%。此外,基于这种纳米复合材料的非对称超级电容器装置也达到了最佳指标:2 Ag-1 时的比容量为 291.6 C/g,能量密度为 61Whkg-1,功率密度为 1500Wkg-1,库仑效率为 98.5%,4000 次循环后的持久稳定性为 101%。这项研究表明,镍钴锰金属氧化物/柠檬酸银纳米复合材料有望成为高效、经济、耐用的超级电容器,满足各种能量存储需求。
{"title":"Novel NiCoMn MOFs/Ag Citrate Nanocomposites for High-Performance Asymmetric Supercapacitor Applications","authors":"Mohsin Ali Marwat, Muhammad Fawad Khan, Muhammad Humayun, Saad Ali, Muhammad Ramzan Abdul Karim, Syed Shaheen Shah, Mohamed Bououdina, Zia Ud Din, Kanwar Muhammad Adam, Syed Muhammad Abdullah","doi":"10.1016/j.electacta.2024.145373","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145373","url":null,"abstract":"Addressing the challenges posed by the global energy crisis, this research article explores the pivotal role of novel NiCoMn MOFs/Ag Citrate Nanocomposites in advancing high-performance asymmetric supercapacitor applications. This study delves into the synthesis of an efficient supercapacitor electrode material using a nanocomposite, denoted as MA<sub>x</sub> (where <em>x</em>=1-3), combining NiCoMn metal-organic frameworks (MOFs, represented as M) with Ag-Citrate (notated as A). This synthesis employs an ultrasonication-assisted solvothermal approach. The XRD and SEM analyses authenticate the presence of anticipated phases and elements, revealing a seamless integration of the two components. Electrochemical assessments suggest that introducing Ag-citrate significantly augments the charge storage prowess of the nanocomposites. Specifically, the MA<sub>1</sub> nanocomposite showcases a remarkable specific capacity of 762 C/g at 0.5 Ag<sup>−1</sup>, marking enhancements of 83% and 10% compared to pure Ag-citrate and unaltered MOFs, respectively. Furthermore, the asymmetric supercapacitor device based on this nanocomposite delivers optimal metrics: a specific capacity of 291.6 C/g at 2 Ag<sup>−1</sup>, an energy density of 61Whkg<sup>−1</sup>, a power density of 1500 Wkg<sup>−1</sup>, a Coulombic efficiency of 98.5%, and an enduring stability of 101% over 4000 cycles. This exploration accentuates the significant promise of NiCoMn MOFs/Ag-Citrate nanocomposites as efficient, economical, and durable supercapacitors for a spectrum of energy storage needs.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"34 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1016/j.electacta.2024.145371
Gita B. Bhanuse, Sanath Kumar, Cheng-We Chien, Yen-Pei Fu
The stable structure and material combination design significantly improve the performance of electrochemical energy storage and water splitting. In the present study, we developed a ZCO@Ni-MOF core-shell structure over a nickel foam electrode, which is synthesized through a two-step hydrothermal treatment. The developed material is comprehensively analyzed to confirm structural, chemical, electronic, surface, and morphological characteristics using X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscope (SEM), and transmission electron microscope (TEM). Electrochemical investigations using a three-electrode system revealed that ZCO@Ni-MOF demonstrated an impressive specific capacitance of 1800 F g−1 at a current density of 2 A g−1 in a 1 M KOH electrolyte. The electrochemical findings are consistent across various electrochemical techniques. Furthermore, in-depth studies regarding p-n junction formation, interlayer spacing, and reaction kinetics studies are briefly analyzed with Mott-Schottky, Ex-situ XRD, and operando impedance studies. Moreover, an asymmetric supercapacitor (ASC) is assembled with ZCO@Ni-MOF as the positive electrode and activated carbon as the negative electrode in a Swagelok cell. This configuration demonstrated an energy density of 13.6 Wh kg−1 at a power density of 225 W kg−1. The ASC exhibited performance by retaining 91% of its initial capacity even after 1500 cycles. For practical demonstration, two ASCs are fabricated and assembled in series to light up an LED, and the light-up duration is analyzed. For the oxygen evolution reaction (OER) study, the ZCO@Ni-MOF-based electrode exhibited activity with a lower overpotential of 340 mV (50 mA cm−2) in an alkaline environment and was responsible for stability for about 10 h. This combination reiterates the promising material aspects in energy storage and conversion devices, instilling hope for its potential applications.
稳定的结构和材料组合设计大大提高了电化学储能和水分离的性能。在本研究中,我们在泡沫镍电极上开发了一种 ZCO@Ni-MOF 核壳结构,该结构是通过两步水热处理合成的。利用 X 射线衍射仪 (XRD)、X 射线光电子能谱 (XPS)、衰减全反射-傅立叶变换红外光谱 (ATR-FTIR)、扫描电子显微镜 (SEM) 和透射电子显微镜 (TEM) 对所开发的材料进行了全面分析,以确认其结构、化学、电子、表面和形态特征。使用三电极系统进行的电化学研究表明,ZCO@Ni-MOF 在 1 M KOH 电解液中的电流密度为 2 A g-1 时,比电容高达 1800 F g-1。这些电化学研究结果在各种电化学技术中都是一致的。此外,还通过莫特-肖特基、原位 XRD 和操作阻抗研究对 p-n 结的形成、层间距和反应动力学研究进行了深入分析。此外,在一个世伟洛克电池中,以 ZCO@Ni-MOF 为正极,以活性炭为负极,组装了一个不对称超级电容器(ASC)。这种配置在功率密度为 225 W kg-1 时的能量密度为 13.6 Wh kg-1。ASC 的性能表现为,即使经过 1500 次循环,其初始容量仍能保持 91%。为了进行实际演示,我们制作了两个 ASC,并将其串联起来点亮一个 LED,同时对点亮持续时间进行了分析。在氧进化反应(OER)研究中,基于 ZCO@Ni-MOF 的电极在碱性环境中表现出较低的活性,过电位为 340 mV (50 mA cm-2),并能稳定工作约 10 h。
{"title":"Development of heterostructured ZnCo2O4@Ni-MOF electrode for the asymmetric supercapacitor and electrocatalytic oxygen evolution reaction applications","authors":"Gita B. Bhanuse, Sanath Kumar, Cheng-We Chien, Yen-Pei Fu","doi":"10.1016/j.electacta.2024.145371","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145371","url":null,"abstract":"The stable structure and material combination design significantly improve the performance of electrochemical energy storage and water splitting. In the present study, we developed a ZCO@Ni-MOF core-shell structure over a nickel foam electrode, which is synthesized through a two-step hydrothermal treatment. The developed material is comprehensively analyzed to confirm structural, chemical, electronic, surface, and morphological characteristics using X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscope (SEM), and transmission electron microscope (TEM). Electrochemical investigations using a three-electrode system revealed that ZCO@Ni-MOF demonstrated an impressive specific capacitance of 1800 F g<sup>−1</sup> at a current density of 2 A g<sup>−1</sup> in a 1 M KOH electrolyte. The electrochemical findings are consistent across various electrochemical techniques. Furthermore, in-depth studies regarding p-n junction formation, interlayer spacing, and reaction kinetics studies are briefly analyzed with Mott-Schottky, Ex-situ XRD, and operando impedance studies. Moreover, an asymmetric supercapacitor (ASC) is assembled with ZCO@Ni-MOF as the positive electrode and activated carbon as the negative electrode in a Swagelok cell. This configuration demonstrated an energy density of 13.6 Wh kg<sup>−1</sup> at a power density of 225 W kg<sup>−1</sup>. The ASC exhibited performance by retaining 91% of its initial capacity even after 1500 cycles. For practical demonstration, two ASCs are fabricated and assembled in series to light up an LED, and the light-up duration is analyzed. For the oxygen evolution reaction (OER) study, the ZCO@Ni-MOF-based electrode exhibited activity with a lower overpotential of 340 mV (50 mA cm<sup>−2</sup>) in an alkaline environment and was responsible for stability for about 10 h. This combination reiterates the promising material aspects in energy storage and conversion devices, instilling hope for its potential applications.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"12 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1016/j.electacta.2024.145380
Suresh D S, Sapna Sharanappa, Vijaykumar S P, Abdullah Ba Shbil, Ganesha H, Devendrappa H
Cutting-edge application of Photo-supercapacitor (PSC) in optoelectronics from photo-electrochemical storage electrode with energy conversion generating revolutionary shift to novel energy storage devices. The maximum absorbance of Rose Bengal (RB) at 547 nm gives the Power Conversion Efficiency (PCE) of Dye Sensitized Solar Cell (DSSC) is 0.34%. The fusion of RB with reduced Graphene Oxide (rGO) in aqueous and organic environment solubility provides functionalization of oxygen groups modifies surface wettability and mobility of Rose Bengal-reduced Graphene Oxide (RB-rGO) composite. It also provides structural transformation of amorphous RB into poly-crystalline RB-rGO composite and morphology studies confirm that large surface area of condensed layers of rGO grains incorporated with circular plates of RB provides maximum specific capacitance was 672 F/g and capacitance retention is 82.5% across 4000 Galvanostatic Charging and Discharging (GCD) cycles. The highest energy and power density are achieved by RB-rGO's Electric Double Layer Capacitance (EDLC) mechanism yields 38.88 Whr/kg and 4.988 kW/kg respectively. The PSC evident from self-charging capacitor improved specific capacitance of Galvanostatic charging and discharging (GCD) from 179 to 483 F/g and Cyclic Voltammetry (CV) from 285 to 503 F/g respectively under the influence of light that can enhances surface adsorption and charge transfer kinetics.
{"title":"Hydrothermal Synthesis of Rose Bengal Dye Particle Deposition on Layered Reduced Graphene Oxide Composite for Photo Assisted Supercapacitor Applications","authors":"Suresh D S, Sapna Sharanappa, Vijaykumar S P, Abdullah Ba Shbil, Ganesha H, Devendrappa H","doi":"10.1016/j.electacta.2024.145380","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145380","url":null,"abstract":"Cutting-edge application of Photo-supercapacitor (PSC) in optoelectronics from photo-electrochemical storage electrode with energy conversion generating revolutionary shift to novel energy storage devices. The maximum absorbance of Rose Bengal (RB) at 547 nm gives the Power Conversion Efficiency (PCE) of Dye Sensitized Solar Cell (DSSC) is 0.34%. The fusion of RB with reduced Graphene Oxide (rGO) in aqueous and organic environment solubility provides functionalization of oxygen groups modifies surface wettability and mobility of Rose Bengal-reduced Graphene Oxide (RB-rGO) composite. It also provides structural transformation of amorphous RB into poly-crystalline RB-rGO composite and morphology studies confirm that large surface area of condensed layers of rGO grains incorporated with circular plates of RB provides maximum specific capacitance was 672 F/g and capacitance retention is 82.5% across 4000 Galvanostatic Charging and Discharging (GCD) cycles. The highest energy and power density are achieved by RB-rGO's Electric Double Layer Capacitance (EDLC) mechanism yields 38.88 Whr/kg and 4.988 kW/kg respectively. The PSC evident from self-charging capacitor improved specific capacitance of Galvanostatic charging and discharging (GCD) from 179 to 483 F/g and Cyclic Voltammetry (CV) from 285 to 503 F/g respectively under the influence of light that can enhances surface adsorption and charge transfer kinetics.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"21 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phosphoric acid-doped polybenzimidazole (PA-PBI) membranes are one of the most promising candidates for practical applications in high temperature proton exchange membrane fuel cells. In the field of the proton exchange membranes, a key target is to develop the membranes possessing high proton conducting ability, and meanwhile maintaining good mechanical integrity. It is extremely hard for PBI-based membranes at a high acid doping level (ADL) to have good strength due to the strong “plasticization effect” caused by PA molecules to PBI backbones. In order to obtain high-proton-conductivity membranes with a good comprehensive performance, three imidazole-substituted heteropolyacid salts (imi-HPAs) were synthesized and then incorporated into an arylether-type polybenzimidazole (Ph-PBI) matrix to fabricate some composite membranes via a solution blending process. Since both Ph-PBI matrix and imidazole-substituted heteropolyacid salts contained the functional imidazole groups, some preferred mixed effects and performance enhancements of the organic-inorganic composite membranes were observed. The morphology of the composite membranes revealed that imidazole-substituted heteropolyacid salts were homogenously dispersed in the Ph-PBI matrix. The membrane Ph-PBI/imi-HPA-3-15% at ADL∼290.4% had the highest conductivity of 166.6 mS·cm-1 at 200 °C. A H2/O2 fuel cell based on one membrane showed a peak power density of 454 mW·cm-2 at 160 °C, without humidification.
{"title":"Arylether-type polybenzimidazole-based composites containing imidazole-substituted heteropolyacid salts for high-temperature proton exchange membrane fuel cells","authors":"Jiayu Yang, Chengying Shi, Jingwei Li, Tianyang Li, Hui Zhang, Qingxin Chen, Peng Wang, Wei Hu, Baijun Liu","doi":"10.1016/j.electacta.2024.145368","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145368","url":null,"abstract":"Phosphoric acid-doped polybenzimidazole (PA-PBI) membranes are one of the most promising candidates for practical applications in high temperature proton exchange membrane fuel cells. In the field of the proton exchange membranes, a key target is to develop the membranes possessing high proton conducting ability, and meanwhile maintaining good mechanical integrity. It is extremely hard for PBI-based membranes at a high acid doping level (ADL) to have good strength due to the strong “plasticization effect” caused by PA molecules to PBI backbones. In order to obtain high-proton-conductivity membranes with a good comprehensive performance, three imidazole-substituted heteropolyacid salts (imi-HPAs) were synthesized and then incorporated into an arylether-type polybenzimidazole (Ph-PBI) matrix to fabricate some composite membranes via a solution blending process. Since both Ph-PBI matrix and imidazole-substituted heteropolyacid salts contained the functional imidazole groups, some preferred mixed effects and performance enhancements of the organic-inorganic composite membranes were observed. The morphology of the composite membranes revealed that imidazole-substituted heteropolyacid salts were homogenously dispersed in the Ph-PBI matrix. The membrane Ph-PBI/imi-HPA-3-15% at ADL∼290.4% had the highest conductivity of 166.6 mS·cm<sup>-1</sup> at 200 °C. A H<sub>2</sub>/O<sub>2</sub> fuel cell based on one membrane showed a peak power density of 454 mW·cm<sup>-2</sup> at 160 °C, without humidification.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"46 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Graphene quantum dots (GQDs) hold promise as co-sensitizers in dye-sensitized solar cells (DSSCs) due to their excellent light-harvesting capabilities. However, their intrinsic limitations in electron transport can hinder overall device performance. This study investigates the impact of heteroatom-doping with nitrogen (N), fluorine (F), and sulfur (S) on the performance of GQDs as co-sensitizers for N719 dye in DSSCs. The heteroatom-doped GQDs (NFS-GQDs) enhance light harvesting compared to pristine GQDs, extending absorption into the UV region. Photoluminescence quenching data confirms efficient electron injection from both GQDs and NFS-GQDs to the TiO2 conduction band, exhibiting superior electron injection efficiency. Among the co-sensitized cells, 20 wt.% doping level achieves the highest power conversion efficiency of 4.33 %. Besides, electron transport and electronic structure were investigated in detail to understand the interaction of the TiO2/NFS-GQDs+N719 interface. The findings suggest that NFS-doping GQDs offer a promising strategy for developing efficient co-sensitizers for DSSCs.
{"title":"Electron Transport in Heteroatom-Doped Graphene Quantum Dots for TiO2-based Dye-sensitized Solar Cells","authors":"Savisha Mahalingam, Ramisha Rabeya, Abreeza Manap, Kam Sheng Lau, Chin Hua Chia, Nurfanizan Afandi, Azimah Omar","doi":"10.1016/j.electacta.2024.145369","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145369","url":null,"abstract":"Graphene quantum dots (GQDs) hold promise as co-sensitizers in dye-sensitized solar cells (DSSCs) due to their excellent light-harvesting capabilities. However, their intrinsic limitations in electron transport can hinder overall device performance. This study investigates the impact of heteroatom-doping with nitrogen (N), fluorine (F), and sulfur (S) on the performance of GQDs as co-sensitizers for N719 dye in DSSCs. The heteroatom-doped GQDs (NFS-GQDs) enhance light harvesting compared to pristine GQDs, extending absorption into the UV region. Photoluminescence quenching data confirms efficient electron injection from both GQDs and NFS-GQDs to the TiO<sub>2</sub> conduction band, exhibiting superior electron injection efficiency. Among the co-sensitized cells, 20 wt.% doping level achieves the highest power conversion efficiency of 4.33 %. Besides, electron transport and electronic structure were investigated in detail to understand the interaction of the TiO<sub>2</sub>/NFS-GQDs+N719 interface. The findings suggest that NFS-doping GQDs offer a promising strategy for developing efficient co-sensitizers for DSSCs.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"26 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-17DOI: 10.1016/j.electacta.2024.145372
Sajid Khan, Muhammad Zahir Iqbal, Nacer Badi, Ahmed M. Fouda, H.H. Hegazy
Mixed halide perovskite materials exhibited excellent optoelectronic, ionic, and electronic properties, extending the possibility of introducing them as an efficient electrode material for energy storage and conversion applications. In this work, we performed the synthesis of CsPbIBr2 in ambient conditions and investigated its characteristics for solar cells and energy storage devices. The X-ray diffraction (XRD) technique is employed for the structural characterization of the as-synthesized perovskite crystals. The optical bandgap of ⁓ 2.1 eV is revealed utilizing UV-Vis, photoluminescence (PL), and diffuse reflectance (DR) spectroscopies. The photovoltaic performance of the as-synthesized CsPbIBr2 perovskite for solar cell devices is initially tuned by varying precursor solution quantity to obtain the optimum performance. The optimized PCE of 6.2% is achieved for the device without a hole transport layer (HTL) and with carbon as the counter electrode. Impedance spectroscopy (IS) is employed to investigate the impact of solution quantity on interfacial charge transport kinetics. Further, the electrochemical properties of the perovskite are elucidated by analyzing cyclic voltammetry (CV) voltammograms, and galvanostatic charge-discharge (GCD) curves recorded at different scan rates and current densities, respectively. The specific capacity of 570 C/g is recorded under dark conditions. Our findings demonstrate the dual applications of the perovskites and will pave a pathway to develop new potential electrode materials based on perovskite for energy conversion and storage devices.
混合卤化物包晶材料具有优异的光电、离子和电子特性,这为将其作为一种高效的电极材料引入能量存储和转换应用提供了可能。在这项工作中,我们在环境条件下合成了 CsPbIBr2,并研究了其用于太阳能电池和储能设备的特性。我们采用 X 射线衍射 (XRD) 技术对合成的包晶晶体进行了结构表征。利用紫外-可见光谱、光致发光(PL)和漫反射(DR)光谱揭示了⁓ 2.1 eV 的光带隙。通过改变前驱体溶液的数量,初步调整了合成的 CsPbIBr2 包晶石用于太阳能电池器件的光伏性能,以获得最佳性能。在没有空穴传输层(HTL)和使用碳作为对电极的器件中,实现了 6.2% 的优化 PCE。阻抗光谱(IS)用于研究溶液量对界面电荷传输动力学的影响。此外,通过分析分别以不同扫描速率和电流密度记录的循环伏安(CV)伏安图和电静态充放电(GCD)曲线,阐明了该包晶石的电化学特性。在黑暗条件下记录的比容量为 570 C/g。我们的研究结果证明了这种包晶石的双重用途,并将为开发基于包晶石的新型潜在电极材料铺平道路,以用于能量转换和存储设备。
{"title":"Investigating the synergistic characteristics of air processable CsPbIBr₂ perovskite electrodes for solar cell and energy storage applications","authors":"Sajid Khan, Muhammad Zahir Iqbal, Nacer Badi, Ahmed M. Fouda, H.H. Hegazy","doi":"10.1016/j.electacta.2024.145372","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145372","url":null,"abstract":"Mixed halide perovskite materials exhibited excellent optoelectronic, ionic, and electronic properties, extending the possibility of introducing them as an efficient electrode material for energy storage and conversion applications. In this work, we performed the synthesis of CsPbIBr<sub>2</sub> in ambient conditions and investigated its characteristics for solar cells and energy storage devices. The X-ray diffraction (<em>XRD</em>) technique is employed for the structural characterization of the as-synthesized perovskite crystals. The optical bandgap of ⁓ 2.1 eV is revealed utilizing <em>UV-Vis</em>, photoluminescence (<em>PL</em>), and diffuse reflectance (<em>DR</em>) spectroscopies. The photovoltaic performance of the as-synthesized CsPbIBr<sub>2</sub> perovskite for solar cell devices is initially tuned by varying precursor solution quantity to obtain the optimum performance. The optimized <em>PCE</em> of 6.2% is achieved for the device without a hole transport layer (<em>HTL</em>) and with carbon as the counter electrode. Impedance spectroscopy (<em>IS</em>) is employed to investigate the impact of solution quantity on interfacial charge transport kinetics. Further, the electrochemical properties of the perovskite are elucidated by analyzing cyclic voltammetry (<em>CV</em>) voltammograms, and galvanostatic charge-discharge (<em>GCD</em>) curves recorded at different scan rates and current densities, respectively. The specific capacity of 570 C/g is recorded under dark conditions. Our findings demonstrate the dual applications of the perovskites and will pave a pathway to develop new potential electrode materials based on perovskite for energy conversion and storage devices.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"76 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-17DOI: 10.1016/j.electacta.2024.145365
Alessandro Brega, Sylvain Brimaud
Herein, an electrochemical channel flow cell setup that allows for conducting electrochemical investigations up to 80°C and pressurized gases up to 3 bar is presented in details, including technical drawings and list of parts, in an attempt to facilitate the adoption of such setup by the community for electrochemical/electrocatalytic kinetic studies. The oxygen reduction reaction (ORR) on a commercial Pt/C catalyst, chosen as a model reaction, was investigated to demonstrate the reliability of the experimental setup, including the hydrodynamic properties, to provide hands on practical guidelines to carry out experiments, and, on the other hand, to illustrate the capabilities of this electrochemical setup for an assessment of basic quantities. Among the various quantities that have be determined experimentally for the ORR, a monotonic decay of the activation enthalpy and bell-shaped variation of the entropy of activation were resolved as the overpotential for the ORR increases. These fundamental thermodynamic/kinetic data are briefly discussed within the frame of the established reaction mechanism and can serve as a feed for the benchmarking of the outputs from theoretical/computational models. Furthermore, a remarkable agreement was obtained between the change in the activation free Gibbs energy determined for the ORR with the flow cell setup and the kinetic region of fuel cell polarization curve obtained with the same Pt/C catalyst embedded in the cathode of an a hydrogen proton exchange membrane fuel cell. This enables potentially a bridge of the environmental gap existing between model experiments conducted at active material level in contact with liquid electrolyte and experiments with porous gas diffusion electrode embedding the same active material that are employed in practical device.
{"title":"An open source electrochemical channel flow cell setup for kinetics studies. Application to investigations on oxygen electrocatalysis.","authors":"Alessandro Brega, Sylvain Brimaud","doi":"10.1016/j.electacta.2024.145365","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145365","url":null,"abstract":"Herein, an electrochemical channel flow cell setup that allows for conducting electrochemical investigations up to 80°C and pressurized gases up to 3 bar is presented in details, including technical drawings and list of parts, in an attempt to facilitate the adoption of such setup by the community for electrochemical/electrocatalytic kinetic studies. The oxygen reduction reaction (ORR) on a commercial Pt/C catalyst, chosen as a model reaction, was investigated to demonstrate the reliability of the experimental setup, including the hydrodynamic properties, to provide hands on practical guidelines to carry out experiments, and, on the other hand, to illustrate the capabilities of this electrochemical setup for an assessment of basic quantities. Among the various quantities that have be determined experimentally for the ORR, a monotonic decay of the activation enthalpy and bell-shaped variation of the entropy of activation were resolved as the overpotential for the ORR increases. These fundamental thermodynamic/kinetic data are briefly discussed within the frame of the established reaction mechanism and can serve as a feed for the benchmarking of the outputs from theoretical/computational models. Furthermore, a remarkable agreement was obtained between the change in the activation free Gibbs energy determined for the ORR with the flow cell setup and the kinetic region of fuel cell polarization curve obtained with the same Pt/C catalyst embedded in the cathode of an a hydrogen proton exchange membrane fuel cell. This enables potentially a bridge of the environmental gap existing between model experiments conducted at active material level in contact with liquid electrolyte and experiments with porous gas diffusion electrode embedding the same active material that are employed in practical device.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"32 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}