Adsorption of dimethylaluminum isopropoxide (DMAI) on the Al2O3 surface: A machine-learning potential study

IF 6.7 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Science: Advanced Materials and Devices Pub Date : 2024-06-04 DOI:10.1016/j.jsamd.2024.100754
Miso Kim, Sehee Kim, Bonggeun Shong
{"title":"Adsorption of dimethylaluminum isopropoxide (DMAI) on the Al2O3 surface: A machine-learning potential study","authors":"Miso Kim,&nbsp;Sehee Kim,&nbsp;Bonggeun Shong","doi":"10.1016/j.jsamd.2024.100754","DOIUrl":null,"url":null,"abstract":"<div><p>Dimethylaluminum isopropoxide (DMAI) is attracting attention as an alternative precursor for atomic layer deposition (ALD) of aluminum oxide (Al<sub>2</sub>O<sub>3</sub>). However, the surface chemical reaction mechanisms of DMAI during ALD regarding its dimeric structure under vacuum deposition process conditions has yet to be clear. In this work, the adsorption mechanism of dimeric and monomeric DMAI on a fully hydroxylated Al<sub>2</sub>O<sub>3</sub> surface is studied using machine-learning potential (MLP) calculations. The initial adsorption of DMAI appears facile and would result in the coexistence of both methyl and isopropoxy ligands on the surface. The reactivity of DMAI is smaller than that of TMA, owing to the propensity of DMAI to adopt a dimeric form. Especially when the substrate is partially covered by other adsorbate species, the large molecular size and low reactivity of dimeric DMAI considerably hinder its reactivity toward surface adsorption. Current results are in good correspondence with the previous experimental results, where lower growth per cycle (GPC) and higher selectivity in area-selective ALD (AS-ALD) could be observed by using DMAI than compared to those of TMA processes.</p></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468217924000856/pdfft?md5=9cbdef6a50b4b9595b5b7045893dbb76&pid=1-s2.0-S2468217924000856-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924000856","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dimethylaluminum isopropoxide (DMAI) is attracting attention as an alternative precursor for atomic layer deposition (ALD) of aluminum oxide (Al2O3). However, the surface chemical reaction mechanisms of DMAI during ALD regarding its dimeric structure under vacuum deposition process conditions has yet to be clear. In this work, the adsorption mechanism of dimeric and monomeric DMAI on a fully hydroxylated Al2O3 surface is studied using machine-learning potential (MLP) calculations. The initial adsorption of DMAI appears facile and would result in the coexistence of both methyl and isopropoxy ligands on the surface. The reactivity of DMAI is smaller than that of TMA, owing to the propensity of DMAI to adopt a dimeric form. Especially when the substrate is partially covered by other adsorbate species, the large molecular size and low reactivity of dimeric DMAI considerably hinder its reactivity toward surface adsorption. Current results are in good correspondence with the previous experimental results, where lower growth per cycle (GPC) and higher selectivity in area-selective ALD (AS-ALD) could be observed by using DMAI than compared to those of TMA processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Al2O3 表面对二甲基异丙醇铝 (DMAI) 的吸附:机器学习潜力研究
二甲基异丙醇铝(DMAI)作为氧化铝(Al2O3)原子层沉积(ALD)的替代前驱体备受关注。然而,在真空沉积工艺条件下,DMAI 的二聚体结构在 ALD 过程中的表面化学反应机制尚未明确。本研究利用机器学习势(MLP)计算方法研究了二聚体和单体 DMAI 在完全羟基化的 Al2O3 表面上的吸附机理。DMAI 的初始吸附似乎很容易,会导致甲基配体和异丙氧基配体在表面共存。DMAI 的反应活性小于 TMA,这是因为 DMAI 倾向于采用二聚形式。特别是当基底被其他吸附物部分覆盖时,二聚 DMAI 的大分子尺寸和低反应活性大大阻碍了其对表面吸附的反应活性。目前的结果与之前的实验结果非常吻合,与 TMA 工艺相比,使用 DMAI 的区域选择性 ALD(AS-ALD)每周期生长量(GPC)更低,选择性更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Science: Advanced Materials and Devices
Journal of Science: Advanced Materials and Devices Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.90
自引率
2.50%
发文量
88
审稿时长
47 days
期刊介绍: In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research. Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science. With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.
期刊最新文献
Harnessing ambient sound: Different approaches to acoustic energy harvesting using triboelectric nanogenerators A novel carbon quantum dot (CQD) synthesis method with cost-effective reactants and a definitive indication: Hot bubble synthesis (HBBBS) Pt/ZnO and Pt/few-layer graphene/ZnO Schottky devices with Al ohmic contacts using Atlas simulation and machine learning Photothermal impacts induced by laser pulse in a 2D semiconducting medium with temperature-dependent properties under strain–temperature rate-dependent theory Comparative analysis of microlens array formation in fused silica glass by laser: Femtosecond versus picosecond pulses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1