A hypotheses-driven framework for human–machine expertise process

IF 2.1 3区 心理学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Cognitive Systems Research Pub Date : 2024-06-04 DOI:10.1016/j.cogsys.2024.101255
Serge Sonfack Sounchio, Laurent Geneste, Bernard Kamsu Foguem
{"title":"A hypotheses-driven framework for human–machine expertise process","authors":"Serge Sonfack Sounchio,&nbsp;Laurent Geneste,&nbsp;Bernard Kamsu Foguem","doi":"10.1016/j.cogsys.2024.101255","DOIUrl":null,"url":null,"abstract":"<div><p>The hypothesis-driven methodology is a cognitive activity used in expertise processes to solve problems with limited knowledge and understanding. Although some organizations have standardized this approach to guide humans in carrying out expertise in enterprises, it lacks appropriate tools to assist experts in carrying out this cognitive activity, tracking understanding, or capturing the reasoning steps and the knowledge produced during the process.</p><p>To acquire, share and reuse experts’ knowledge applied during expertise processes while assisting humans in bringing understanding to complex problems, this study introduces a human–machine collaborative framework that formalizes experts’ knowledge from the hypothesis-driven methodology described in the France standard NF X50-110 of “Quality of expertise activity”. This framework utilizes Hypothesis Theory extended with qualitative doubt and a systematic reasoning process to generate a hypothesis exploratory graph (HEG).</p><p>The proposed approach makes it easier to carry out expertise processes through a human–machine collaboration, offers a means to share and reuse knowledge from expertise, and provides expertise processes evaluation mechanisms. Furthermore, an experiment conducted on a use-case of expertise process verifies the feasibility and effectiveness of the approach.</p></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1389041724000494/pdfft?md5=9c52e6fa4afbcba466c874d4febe947f&pid=1-s2.0-S1389041724000494-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724000494","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The hypothesis-driven methodology is a cognitive activity used in expertise processes to solve problems with limited knowledge and understanding. Although some organizations have standardized this approach to guide humans in carrying out expertise in enterprises, it lacks appropriate tools to assist experts in carrying out this cognitive activity, tracking understanding, or capturing the reasoning steps and the knowledge produced during the process.

To acquire, share and reuse experts’ knowledge applied during expertise processes while assisting humans in bringing understanding to complex problems, this study introduces a human–machine collaborative framework that formalizes experts’ knowledge from the hypothesis-driven methodology described in the France standard NF X50-110 of “Quality of expertise activity”. This framework utilizes Hypothesis Theory extended with qualitative doubt and a systematic reasoning process to generate a hypothesis exploratory graph (HEG).

The proposed approach makes it easier to carry out expertise processes through a human–machine collaboration, offers a means to share and reuse knowledge from expertise, and provides expertise processes evaluation mechanisms. Furthermore, an experiment conducted on a use-case of expertise process verifies the feasibility and effectiveness of the approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人机专业知识流程的假设驱动框架
假设驱动法是专业知识流程中的一种认知活动,用于在知识和理解有限的情况下解决问题。为了获取、共享和重用专家在专业知识流程中应用的知识,同时协助人类理解复杂问题,本研究引入了一个人机协作框架,该框架将法国标准 NF X50-110 "专业知识活动质量 "中描述的假设驱动方法中的专家知识正规化。该框架利用假设理论(Hypothesis Theory)扩展了定性怀疑和系统推理过程,以生成假设探索图(HEG)。所提出的方法使通过人机协作开展专业知识流程变得更容易,提供了共享和重用专业知识的途径,并提供了专业知识流程评估机制。此外,在专业知识流程用例上进行的实验验证了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognitive Systems Research
Cognitive Systems Research 工程技术-计算机:人工智能
CiteScore
9.40
自引率
5.10%
发文量
40
审稿时长
>12 weeks
期刊介绍: Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial. The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition. Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.
期刊最新文献
A mathematical formulation of learner cognition for personalised learning experiences Identification of the emotional component of inner pronunciation: EEG-ERP study Towards emotion-aware intelligent agents by utilizing knowledge graphs of experiences Exploring the impact of virtual reality flight simulations on EEG neural patterns and task performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1