Indra Perdana, Muhammad Irfan Rahman, D. Aprilianto, H. T. Petrus, Divita Hayyu Kinanti
{"title":"Kinetics and Thermodynamics Study of Ammonia Leaching on Spent LMR-NMC Battery Cathodes","authors":"Indra Perdana, Muhammad Irfan Rahman, D. Aprilianto, H. T. Petrus, Divita Hayyu Kinanti","doi":"10.22146/ijc.93312","DOIUrl":null,"url":null,"abstract":"The recycling of spent lithium NMC-type batteries, widely used in electric vehicles, presents a challenge due to manganese content, which complicates metal separation and purification. This study explored a selective leaching process using ammonia to recover metals from high-manganese-content LMR-NMC cathodes. By adjusting the (NH4)2SO4 reagent concentration to 1–2 M and maintaining the temperature between 50–80 °C, the recovery rates of lithium, nickel and cobalt metals were enhanced, leaving manganese primarily as residue in the form of Mn(OH)₂ and (NH4)2Mn(SO4)2. A kinetics model, integrating an equilibrium-shrinking core model with a modified temperature-dependent Arrhenius approach, accurately simulates the metal recovery. The activation energies of the forward leaching reactions of Li, Ni, and Co were respectively (1.4331±0.0036)×105, (1.5494±0.0034)×105, and (1.5743±0.0040)×105 J/mol, while those for the backward reactions were (5.3307±0.0041)×105, (2.4753±0.0093)×105, and (1.6289±0.0092)×105 J/mol, respectively. The leaching mechanism was found to be exothermic, which allows maximum recovery at low temperatures. The findings highlight ammonia’s effectiveness as a selective leachant, significantly reducing manganese in the leaching solution, and streamlining nickel and cobalt separation, thus enhancing the recycling process’s efficiency and sustainability.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"63 24","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.93312","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The recycling of spent lithium NMC-type batteries, widely used in electric vehicles, presents a challenge due to manganese content, which complicates metal separation and purification. This study explored a selective leaching process using ammonia to recover metals from high-manganese-content LMR-NMC cathodes. By adjusting the (NH4)2SO4 reagent concentration to 1–2 M and maintaining the temperature between 50–80 °C, the recovery rates of lithium, nickel and cobalt metals were enhanced, leaving manganese primarily as residue in the form of Mn(OH)₂ and (NH4)2Mn(SO4)2. A kinetics model, integrating an equilibrium-shrinking core model with a modified temperature-dependent Arrhenius approach, accurately simulates the metal recovery. The activation energies of the forward leaching reactions of Li, Ni, and Co were respectively (1.4331±0.0036)×105, (1.5494±0.0034)×105, and (1.5743±0.0040)×105 J/mol, while those for the backward reactions were (5.3307±0.0041)×105, (2.4753±0.0093)×105, and (1.6289±0.0092)×105 J/mol, respectively. The leaching mechanism was found to be exothermic, which allows maximum recovery at low temperatures. The findings highlight ammonia’s effectiveness as a selective leachant, significantly reducing manganese in the leaching solution, and streamlining nickel and cobalt separation, thus enhancing the recycling process’s efficiency and sustainability.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.