Bojana Ginovska, Simone Raugei, Stephen W Ragsdale, Christopher Ohmer, Ritimukta Sarangi
{"title":"Structural and Mechanistic Advances in the Chemistry of Methyl-Coenzyme M Reductase (MCR).","authors":"Bojana Ginovska, Simone Raugei, Stephen W Ragsdale, Christopher Ohmer, Ritimukta Sarangi","doi":"10.1021/acs.accounts.4c00730","DOIUrl":null,"url":null,"abstract":"<p><p>ConspectusMethane represents 34% of U.S. energy consumption and is a major greenhouse gas related to the global carbon cycle and energy production. However, current industrial practices significantly increase atmospheric methane levels, necessitating a deeper understanding of its biosynthesis and oxidation. Methyl-coenzyme M reductase (MCR) is central to biological methane metabolism, catalyzing the final step of methanogenesis and the first step in anaerobic methane oxidation. It is also a key target for strategies to capture and transform methane into value-added chemicals.The active site of MCR is a buried Ni-based cofactor only accessible by the substrates via a 50 Å long tunnel. Although the Ni(I) state is required to initiate catalysis, capturing this state remains a challenge for the current structural techniques. Recent advances in structural biology using X-ray Free-Electron Laser serial crystallography have provided insights into MCR's inactive Ni(II) state at room temperature and show promise for capturing its active Ni(I) form.Our team has established several critical aspects of the MCR mechanism using a combination of experimental and computational studies. MCR uses CH<sub>3</sub>-SCoM and CoBSH as substrates, producing methane and a disulfide product CoMSSCoB. Kinetic analysis showed that productive substrate binding requires CH<sub>3</sub>-SCoM to bind first, inducing conformational changes that optimize the active site for subsequent CoBSH binding. Following substrate binding, four proposed methane production/oxidation mechanisms were examined, establishing whether the reaction proceeds through an organometallic methyl-nickel(III), methyl anion ion, or methyl radical intermediate. Experimental measurements using CoBSH analogs successfully slowed the reaction, allowing for mechanistic insight that demonstrated the methyl radical pathway, where the initial interactions involve homolytic cleavage of the methyl-sulfur bond, generating a methyl radical that quickly abstracts the thiol hydrogen atom of CoBSH to form methane. Computational studies further confirmed that, compared to other mechanisms, the methyl radical mechanism is thermodynamically more favorable and accessible under physiological conditions.Spectroscopic and computational studies challenged the conventional understanding of substrate binding in MCR by proposing an alternative positioning of CH<sub>3</sub>-SCoM and CoMSSCoB in the active site pocket. The research suggested that CH<sub>3</sub>-SCoM (substrate) and CoMSSCoB (product) bind via their sulfonate groups to the Ni(I) center of cofactor F<sub>430</sub>. This binding allows for the reaction without substrate reorganization in the pocket but would require a long-range electron transfer.Overall, the work summarized in this review reflects our current understanding of the enzyme's catalytic mechanism and structural dynamics. This is essential for developing efficient methane conversion technologies that could mitigate its environmental impact while harnessing energy-storage properties.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.4c00730","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ConspectusMethane represents 34% of U.S. energy consumption and is a major greenhouse gas related to the global carbon cycle and energy production. However, current industrial practices significantly increase atmospheric methane levels, necessitating a deeper understanding of its biosynthesis and oxidation. Methyl-coenzyme M reductase (MCR) is central to biological methane metabolism, catalyzing the final step of methanogenesis and the first step in anaerobic methane oxidation. It is also a key target for strategies to capture and transform methane into value-added chemicals.The active site of MCR is a buried Ni-based cofactor only accessible by the substrates via a 50 Å long tunnel. Although the Ni(I) state is required to initiate catalysis, capturing this state remains a challenge for the current structural techniques. Recent advances in structural biology using X-ray Free-Electron Laser serial crystallography have provided insights into MCR's inactive Ni(II) state at room temperature and show promise for capturing its active Ni(I) form.Our team has established several critical aspects of the MCR mechanism using a combination of experimental and computational studies. MCR uses CH3-SCoM and CoBSH as substrates, producing methane and a disulfide product CoMSSCoB. Kinetic analysis showed that productive substrate binding requires CH3-SCoM to bind first, inducing conformational changes that optimize the active site for subsequent CoBSH binding. Following substrate binding, four proposed methane production/oxidation mechanisms were examined, establishing whether the reaction proceeds through an organometallic methyl-nickel(III), methyl anion ion, or methyl radical intermediate. Experimental measurements using CoBSH analogs successfully slowed the reaction, allowing for mechanistic insight that demonstrated the methyl radical pathway, where the initial interactions involve homolytic cleavage of the methyl-sulfur bond, generating a methyl radical that quickly abstracts the thiol hydrogen atom of CoBSH to form methane. Computational studies further confirmed that, compared to other mechanisms, the methyl radical mechanism is thermodynamically more favorable and accessible under physiological conditions.Spectroscopic and computational studies challenged the conventional understanding of substrate binding in MCR by proposing an alternative positioning of CH3-SCoM and CoMSSCoB in the active site pocket. The research suggested that CH3-SCoM (substrate) and CoMSSCoB (product) bind via their sulfonate groups to the Ni(I) center of cofactor F430. This binding allows for the reaction without substrate reorganization in the pocket but would require a long-range electron transfer.Overall, the work summarized in this review reflects our current understanding of the enzyme's catalytic mechanism and structural dynamics. This is essential for developing efficient methane conversion technologies that could mitigate its environmental impact while harnessing energy-storage properties.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.