Types of application of artificial intelligence in the diagnosis and prognosis of osteoporosis; a narrative review

Sara Moslehi, Zahra Sadat Mahmoodian, Sasan Zandi Esfahan
{"title":"Types of application of artificial intelligence in the diagnosis and prognosis of osteoporosis; a narrative review","authors":"Sara Moslehi, Zahra Sadat Mahmoodian, Sasan Zandi Esfahan","doi":"10.34172/jpd.2024.11245","DOIUrl":null,"url":null,"abstract":"Introduction: The rising impact of osteoporosis and fragility fractures highlights the need for advanced management strategies. Integrating digital health interventions, especially artificial intelligence (AI) algorithms, is essential. Osteoporosis, a major contributor to elderly disability, demands AI to minimize diagnostic errors. This review targets stakeholders interested in employing AI for osteoporosis management. Methods: We examined 16 articles from PubMed, Google Scholar, and Medline (January 1, 2015, to January 1, 2023) using keywords like AI, osteoporosis, fragility fracture, and machine learning. After excluding redundancies, 15 articles were selected, covering five key aspects of osteoporosis management: Bone mineral densitometry (BMD) predictive variables (n=1), diagnosis, screening, and classification of osteoporosis (n=5), diagnosis and screening of fractures (n=4), fracture risk forecast (n=2), and automated image segmentation (n=3). Results: Recent machine learning (ML) advances empower AI in assessing bone health beyond X-rays. Techniques, including AI-driven analysis with multi-detector computed tomography scans, extend beyond X-ray imaging. Convolutional neural networks (CNNs) excel in fracture diagnosis, surpassing medical professionals. Enhanced CNN performance is achieved through data augmentation and generative networks. Conclusion: Initial ML applications in osteoporosis research focus on the macroscopic scale, leaving a gap in microscale exploration. Establishing a robust system for bone micro-damage initiation detection is crucial for future applications in bone micromechanics. Ongoing development is essential to assess effectiveness and affordability through controlled studies.","PeriodicalId":16657,"journal":{"name":"Journal of Parathyroid Disease","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parathyroid Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/jpd.2024.11245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The rising impact of osteoporosis and fragility fractures highlights the need for advanced management strategies. Integrating digital health interventions, especially artificial intelligence (AI) algorithms, is essential. Osteoporosis, a major contributor to elderly disability, demands AI to minimize diagnostic errors. This review targets stakeholders interested in employing AI for osteoporosis management. Methods: We examined 16 articles from PubMed, Google Scholar, and Medline (January 1, 2015, to January 1, 2023) using keywords like AI, osteoporosis, fragility fracture, and machine learning. After excluding redundancies, 15 articles were selected, covering five key aspects of osteoporosis management: Bone mineral densitometry (BMD) predictive variables (n=1), diagnosis, screening, and classification of osteoporosis (n=5), diagnosis and screening of fractures (n=4), fracture risk forecast (n=2), and automated image segmentation (n=3). Results: Recent machine learning (ML) advances empower AI in assessing bone health beyond X-rays. Techniques, including AI-driven analysis with multi-detector computed tomography scans, extend beyond X-ray imaging. Convolutional neural networks (CNNs) excel in fracture diagnosis, surpassing medical professionals. Enhanced CNN performance is achieved through data augmentation and generative networks. Conclusion: Initial ML applications in osteoporosis research focus on the macroscopic scale, leaving a gap in microscale exploration. Establishing a robust system for bone micro-damage initiation detection is crucial for future applications in bone micromechanics. Ongoing development is essential to assess effectiveness and affordability through controlled studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能在骨质疏松症诊断和预后中的应用类型;叙述性综述
简介:骨质疏松症和脆性骨折的影响日益严重,凸显了对先进管理策略的需求。整合数字健康干预措施,尤其是人工智能(AI)算法至关重要。骨质疏松症是导致老年人残疾的一个主要因素,需要人工智能来最大限度地减少诊断错误。本综述针对有兴趣将人工智能用于骨质疏松症管理的利益相关者。研究方法我们使用人工智能、骨质疏松症、脆性骨折和机器学习等关键词,对PubMed、谷歌学术和Medline(2015年1月1日至2023年1月1日)上的16篇文章进行了研究。在剔除冗余内容后,选出了 15 篇文章,涵盖骨质疏松症管理的五个关键方面:骨密度测量(BMD)预测变量(n=1),骨质疏松症的诊断、筛查和分类(n=5),骨折的诊断和筛查(n=4),骨折风险预测(n=2),以及自动图像分割(n=3)。结果:近期机器学习(ML)的进步使人工智能在评估骨骼健康方面的能力超越了 X 射线。包括人工智能驱动的多探头计算机断层扫描分析在内的各种技术已经超越了 X 射线成像。卷积神经网络(CNN)在骨折诊断方面表现出色,超过了医疗专业人员。通过数据增强和生成网络,增强了卷积神经网络的性能。结论骨质疏松症研究中最初的 ML 应用侧重于宏观尺度,在微观尺度的探索方面存在空白。建立一个强大的骨微观损伤启动检测系统对于未来骨微观力学的应用至关重要。持续开发对于通过对照研究评估有效性和经济性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parathyroid crisis; a short look at an uncommon disease Types of application of artificial intelligence in the diagnosis and prognosis of osteoporosis; a narrative review Recent advancements in the treatment of tertiary hyperparathyroidism Vitamin D status in hemodialysis; current opinions Relationship of calcium-sensing receptor gene polymorphism CASR rs 1042636, CASR rs 1802757, and cinacalcet response among Egyptian hemodialysis patients with secondary hyperparathyroidism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1