The Influence of Different Mass Ratios on Vortex-Induced Vibration Energy Extraction of Four Cylinder Arrays

Fatin Alias, Mohd Hairil Mohd, Mohd Asamudin A. Rahman
{"title":"The Influence of Different Mass Ratios on Vortex-Induced Vibration Energy Extraction of Four Cylinder Arrays","authors":"Fatin Alias, Mohd Hairil Mohd, Mohd Asamudin A. Rahman","doi":"10.37934/arfmts.117.2.114","DOIUrl":null,"url":null,"abstract":"Currently, there is a growing demand for renewable energy harnessed from fluid dynamics within the oil and gas industry. The surge in demand has propelled electricity to become a vital and irreplaceable form of universal energy worldwide. Vortex-Induced Vibrations (VIV) energy harvesting shows great potential as a technology for capturing energy from flowing bodies of water. The purpose of this research is to investigate the numerical aspect of VIV in rigid circular cylinders with the intention of capturing renewable energy from the sea. The investigation employs a Vortex-Induced Vibration Aquatic Clean Energy (VIVACE) converter to analyze the vibration characteristics of densely packed cylinders featuring varying mass ratios (m*) at both minimum and maximum values. Another purpose of the study is to investigate the effect that m* has on the performance of a VIV converter that is comprised of four cylinders positioned in a staggered pattern. For the purpose of analyzing power conversion in the VIV energy converter model across a wide range of mass ratios (from 2.36 to 12.96), simulations are carried out with a Reynolds number of 82000. The findings indicate that the highest converted power reaches a peak of 7.48 W with a mass ratio of 2.36, whereas a greater mass ratio of 12.96 results in only 4.33. The study highlights the substantial influence of mass ratios on the extraction of power output from VIV. The results essentially offer crucial information about the optimum mass ratio in closed four cylinder arrays to design VIV energy harvesting to produce clean and renewable energy sources.","PeriodicalId":37460,"journal":{"name":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","volume":"59 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/arfmts.117.2.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, there is a growing demand for renewable energy harnessed from fluid dynamics within the oil and gas industry. The surge in demand has propelled electricity to become a vital and irreplaceable form of universal energy worldwide. Vortex-Induced Vibrations (VIV) energy harvesting shows great potential as a technology for capturing energy from flowing bodies of water. The purpose of this research is to investigate the numerical aspect of VIV in rigid circular cylinders with the intention of capturing renewable energy from the sea. The investigation employs a Vortex-Induced Vibration Aquatic Clean Energy (VIVACE) converter to analyze the vibration characteristics of densely packed cylinders featuring varying mass ratios (m*) at both minimum and maximum values. Another purpose of the study is to investigate the effect that m* has on the performance of a VIV converter that is comprised of four cylinders positioned in a staggered pattern. For the purpose of analyzing power conversion in the VIV energy converter model across a wide range of mass ratios (from 2.36 to 12.96), simulations are carried out with a Reynolds number of 82000. The findings indicate that the highest converted power reaches a peak of 7.48 W with a mass ratio of 2.36, whereas a greater mass ratio of 12.96 results in only 4.33. The study highlights the substantial influence of mass ratios on the extraction of power output from VIV. The results essentially offer crucial information about the optimum mass ratio in closed four cylinder arrays to design VIV energy harvesting to produce clean and renewable energy sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同质量比对四气缸阵列涡激振动能量提取的影响
目前,石油和天然气行业对利用流体动力学的可再生能源的需求日益增长。需求的激增促使电力成为全球不可替代的重要通用能源。涡流诱导振动(VIV)能量采集技术作为一种从流动水体中获取能量的技术,显示出巨大的潜力。本研究的目的是对刚性圆柱体中的涡激振动进行数值方面的研究,以期从海洋中获取可再生能源。研究采用涡流诱导振动水生清洁能源(VIVACE)转换器,分析具有不同质量比 (m*) 的密集圆柱体在最小值和最大值时的振动特性。研究的另一个目的是调查 m* 对由四个交错排列的气缸组成的 VIV 转换器性能的影响。为了分析 VIV 能量转换器模型在各种质量比(从 2.36 到 12.96)下的功率转换情况,我们使用 82000 雷诺数进行了模拟。结果表明,质量比为 2.36 时,最高转换功率达到峰值 7.48 W,而质量比为 12.96 时,最高转换功率仅为 4.33 W。这项研究强调了质量比对从 VIV 中提取功率输出的重大影响。研究结果为封闭式四气缸阵列的最佳质量比提供了重要信息,有助于设计 VIV 能量收集技术,生产清洁的可再生能源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
2.40
自引率
0.00%
发文量
176
期刊介绍: This journal welcomes high-quality original contributions on experimental, computational, and physical aspects of fluid mechanics and thermal sciences relevant to engineering or the environment, multiphase and microscale flows, microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
期刊最新文献
Synchronous Heat and Mass Transmission in MHD Ohmic Dissipative Viscous Fluid Flow Cavorted by an Upright Surface with Chemical Reaction Energy and Exergy Analysis of R600a as a Substitute for R134a in Automotive Air Conditioning System Exploration of Timber Dry and Wet Rot Defects in Buildings: Types, Causes, Effects and Mitigation Methods Investigating the Effects of Air Bubbles Injection Technique on the Cooling Time of Warm Drinking Water Preparation of TFC-PES Reverse Osmosis Hollow Fibre Membrane for Brackish Water Desalination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1